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Abstract 

The software protection community is always seeking new methods for defending 

their products from unwanted reverse engineering, tampering, and piracy.  Most current 

protections are static.  Once integrated, the program never modifies them.  Being static 

makes them stationary instead of moving targets.  This observation begs a question, 

“Why not incorporate self-modification as a defensive measure?” 

Metamorphism is a defensive mechanism used in modern, advanced malware 

programs.  Although the main impetus for this protection in malware is to avoid detection 

from anti-virus signature scanners by changing the program’s form, certain 

metamorphism techniques also serve as anti-disassembler and anti-debugger protections.  

For example, opcode shifting is a metamorphic technique to confuse the program 

disassembly, but malware modifies these shifts dynamically unlike current static 

approaches.  This research assessed the performance overhead of a simple opcode-

shifting metamorphic engine and evaluated the instruction reach of this particular 

metamorphic transform.  In addition, dynamic subroutine reordering was examined. 

Simple opcode shifts take only a few nanoseconds to execute on modern 

processors and a few shift bytes can mangle several instructions in a program’s 

disassembly.  A program can reorder subroutines in a short span of time (microseconds).  

The combined effects of these metamorphic transforms thwarted advanced debuggers, 

which are key tools in the attacker’s arsenal. 
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METAMORPHISM AS A SOFTWARE PROTECTION 
FOR NON-MALICIOUS CODE 

 
 

1. I. Introduction 

1.1. Background 

Before the early 1900s, many sicknesses and infections—even from minor 

injuries—resulted in death.  The absence of antibiotics contributed to a high mortality 

rate allowing infections to kill literally millions of people.  Fortunately, Ernest Duchesne 

and later Alexander Fleming discovered that penicillin kills the bacteria that inevitably 

caused death [Lew95].  Although this “medical miracle” has saved countless lives, its 

discovery comes from an unlikely source, mold. 

Although not generally considered a legitimate source of software protection 

ideas, state-of-the-art malware programs take extraordinary efforts to protect themselves.  

In fact, many of the tactics adopted by computer viruses are in general use in the non-

malicious software community.  The impetus for this research stems from the belief that 

many protections found in malware have applications for non-malicious programs.  This 

approach is certainly out-of-the-box thinking. 

For instance, the software protection community has not yet considered 

metamorphism as a software security mechanism.  Meanwhile, computer viruses are 

increasingly using metamorphism as a protective measure against signature detection 

[Szo05].  However, metamorphism has other applications, such as anti-reversing, anti-

tamper, and even anti-piracy. 
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Many current standard software defenses, such as encryption and obfuscation, are 

static.  These static defenses do not change during the lifecycle of the software 

application.  Furthermore, users normally apply these protections in tandem, because they 

often complement one another.  While this research does not suggest discarding these 

static protections by any means, it does advocate that adding dynamic protections, such 

as metamorphism, will increase the overall defensive strength of the software protections. 

1.2. Research Goal and Objectives 

The use of metamorphism as a defense in non-malicious software appears to be a 

new approach.  A single reference was found that used a form of self-modification for 

generating registration keys to protect against piracy [YiZ04]. 

Since metamorphism is in its infancy (in the non-malicious software world), this 

research answers some basic questions.  The research goal is to determine if metamorphic 

transformations have predictable execution times.  More specifically, this research 

develops regression models to evaluate execution time overhead of basic metamorphism 

transforms.  Additionally, this study investigats the capabilities of metamorphic 

transforms of subroutine reordering and opcode shifting as anti-disassembly and anti-

debugging protections.  A by-product of this is a set of general implementation 

procedures based on the experimental findings. 

1.3. Assumptions/Limitations 

The execution times from these experiments are platform-dependent because of 

several factors affecting the experimental outcomes.  For example, increasing processor 

speed undoubtedly reduces the execution time, as do compiler optimizations. 
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1.4. Implications 

The implications of this research are significant.  The demonstration of 

metamorphic capabilities alone may lead to a new focus area for software protection in 

government and civilian communities.  The experimental findings indicate that 

metamorphism can be incorporated into sensitive applications while maintaining a degree 

of confidence that performance requirements will still be met. 

Further metamorphism studies may show that strategic self-modification 

significantly bolsters the overall software protection level.  If a metamorphic program 

requires an attacker to possess increased skill to reverse engineer, it may further reduce 

the pool of capable attackers.  Prolonging the time required for an attacker to defeat 

software security mechanism translates into dollar savings in the civilian community and 

prolonged technology superiority for the military. 

1.5. Preview 

Chapter II introduces a classification of protective measures found in malicious 

software.  It also includes a description of the basic functionality of common reversing 

tools, such as disassemblers and debuggers.  Chapter III presents the design of the 

experiment and explains how the study achieves statistically significant results.  Next, 

Chapter IV describes the design and development of the metamorphic engine used in the 

experiments.  The chapter presents lessons learned and rationale for the chosen 

implementation.  Chapter V shows the experimental results and their significance.  

Finally, Chapter VI concludes the thesis, recaps the pertinent highlights, and provides 

guidance on future research. 
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2. II. Literature Review 

2.1. Chapter Overview 

This chapter reviews research literature and summarizes standard protections 

found in malware.  Protections described include anti-disassembly, anti-debugging, anti-

emulation, anti-heuristic, and anti-goat strategies [Szo05].  Some protections are not 

easily classified into a single protection category.  Nonetheless, this classification 

establishes a common basis for consideration.  Metamorphism, for example, can serve as 

an anti-disassembly as well as an anti-debugging protection.  This defense technique is 

the primary target of this research. 

2.2. Introduction 

Researching malware protective measures can provide new methods and ideas for 

protecting sensitive software systems.  Although there are many distinctions between 

virus writers and the software protection community, there are also numerous similarities 

between the two.  For instance, preventing reverse engineering and tampering is a 

common goal for both. 

Common defensive strategies for software protection use many of the same 

armoring techniques found in malware.  The non-malware community commonly uses 

encryption, obfuscation, and anti-debugging techniques for software protection.  

Protection schemes often do not employ a single protection method but rather a 

compliment of defenses.  Each fortification has certain inherent vulnerabilities that an 

attacker can target, but other complimentary protections minimize these weaknesses.  For 

instance, obfuscation helps to protect an encrypted program once it is decrypted. 
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In many cases, the only significant difference between the software protection 

community and malware developers is the individuals’ motivation.  The non-malicious 

software protection community has a wide array of interests from preserving intellectual 

property to safeguarding military weapon systems.  In the malware world, the authors 

seek to gain personal glory by maximizing their viruses’ propagation time, to expose 

software vulnerabilities publicly, and to satisfy personal curiosities. 

Since both malware and protection authors have similar goals, a reasonable step 

for the software protection community is to consider some of the unique defensive 

measures used in malware.  For instance, some malware applications use a technique 

referred to as metamorphism to evade signature-based anti-virus scanners.  Although 

virus authors use metamorphism primarily for avoiding detection, this defense has other 

applications for the software protection community.  Metamorphism—like the other 

traditional protections—is not sufficient alone.  For illustration, encryption only protects 

a program until decryption.  On the other hand, metamorphism only protects when the 

target program is subject to change.  If attackers take a snapshot of a metamorphic 

program (and no longer allow it to change), they overcome all the protection 

metamorphism itself offers.  However, metamorphism is another complimentary 

protection mechanism. 

2.3. Relevant Research 

In order to understand other applications for malware defenses, one must first 

research its origin.  This section highlights many sources referenced by this research to 

understand malware defenses and the difficulties observed in overcoming them. 
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Peter Szor’s The Art of Computer Virus Research and Defense describes many 

defensive strategies used in malware [Szo05].  He classifies many malware defensive 

strategies and discusses many challenges that the anti-virus community faces when 

reverse engineering malware applications. 

Eldad Eilam presents similar information, but from a general reverse engineering 

perspective.  He describes basic and advanced software reverse engineering concepts in 

his book, Reversing:  Secrets of Reverse Engineering [Eil05].  He also discusses anti-

disassembly and anti-debugging protections as well as malware reversing and the 

difficulties faced by malware defensive strategies. 

Collberg, Thomborson, and Low propose a detailed classification of obfuscation 

techniques in A Taxonomy of Obfuscating Transformations [CoT97].  The authors outline 

an in-depth taxonomy for uniquely identifying particular obfuscation techniques.  

Metamorphism has a strong parallel to many of these obfuscation transforms with one 

key difference.  Metamorphism acts as a dynamic obfuscator, which extends the static 

obfuscation techniques. 

Christodorescu and Jha describe the difficulties that anti-virus scanners have 

detecting obfuscated viruses.  They also portray the battle between virus authors and anti-

virus developers as “an obfuscation-deobfuscation game” [ChJ03]. The authors also 

implement their detection method in a tool, the static analyzer for executables (SAFE), 

and show that it is significantly more effective than at least three current anti-virus 

products at detecting morphed code. 
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Sung et al. propose another seemingly more efficient detection method for 

morphed malware in their static analyzer of vicious executables (SAVE) basing 

signatures on API call sequences [SuX04].  Their simplistic approach is to ignore many 

common malware obfuscations, which makes detection even more efficient.  Xu et al. 

also claim that SAVE is significantly more efficient than SAFE in their comparison 

experiment [XuS04].  Finally, Gergely Erdélyi discusses stealth techniques in malware 

and suggests motives of virus writers [Erd04]. 

2.4. Protection Categories 

Virus armoring against reverse engineering includes a wide array of techniques to 

hinder anti-virus developers [Szo05].  In the simplest sense, anti-disassembly tactics 

confuse disassemblers and reverse engineers as well as hiding or masking (e.g., 

encrypting) instructions.  Successfully confusing disassembly tools ultimately requires 

human intervention to overcome.  Anti-debugging techniques include using common 

debugger resources (e.g., debug registers and the stack), active detection of a debugger, 

and executing in memory space difficult for debuggers to follow.  These techniques 

normally result in either the debugger losing program state or improper program 

execution.  Similarly, anti-emulation tactics target emulators by consuming resources or 

relying on obscure API calls the emulators do not model.  Finally, malware uses anti-goat 

techniques to avoid infecting bait files.  A bait file is a simple executable file with known 

file content such as a series of no-operation (NOP) assembly instructions that do nothing.  

When a virus infects a bait file, it is simpler for anti-virus researchers to observe exactly 

what portions of the executable the virus alters during infection. 
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Retroviruses, an additional category of malicious defenses, actively wreak havoc 

on defensive programs such as anti-virus scanners and firewalls [Szo05].  They also fight 

back when they detect tools that an attacker uses to analyze (or tamper) with them. 

2.4.1. Anti-disassembly 

Anti-disassembly techniques defend software against static analysis by an 

attacker.  The defender can apply a variety of methods to accomplish this.  Some 

techniques employed are unique, such as encryption and obfuscation.  Encryption makes 

a program completely unreadable until after it is decrypted.  Obfuscation takes another 

approach by making an unencrypted program virtually unreadable by dramatically 

increasing its complexity. 

Disassemblers operate in various ways to provide a correct program disassembly.  

A simple linear sweep disassembler sequentially disassembles instruction code [Eil05].  

NuMega’s SoftICE [Sof06] and Microsoft’s WinDbg [Win05] are popular linear sweep 

disassemblers. 

Recursive traversal disassemblers actually disassemble and analyze the 

instructions themselves to determine the control flow and where disassembly should 

resume (i.e., where next instruction boundary begins).  Oleh Yuschuk’s OllyDbg [Oll05] 

and DataRescue’s IDA Pro [IDA06] are popular recursive traversal disassemblers. 

To demonstrate the differences between the two types of disassemblers, consider 

the following obfuscated program consisting of inline assembly and a print statement 

shown in Figure 2.1.  This program performs an opcode shift.  Opcode shifts introduce 

data bytes into the code flow and include program logic to ensure the processor never 
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executes the data bytes.  The inserted data bytes serve as false opcode prefixes.  The 

disassembler mistakenly assumes these data bytes are a legitimate prefix for another 

instruction.  Any remaining bytes needed for the false instruction are shifted from the 

subsequent (real) instructions.  This confuses disassemblers, which causes them to 

potentially display a series of mangled instructions.  The inline assembly (_asm 

command) block shows both the logic and one data byte.  In the program shown, the 

inline assembly code instructs the processor to jump over a data byte (the 0x00 byte 

generated by the _emit command in this case) to the label named L1.  Since nothing 

follows the label, the control flow returns to the C code and executes the printf 

instruction. 

 

 

   { 
      _asm 
      { 
         jmp L1      ; logic to “skip” data byte 
         _emit 0x00  ; inserted data byte 
         L1: 
      } 
 
      printf("Hello, World!!!\n"); 
      return 0; 
   } 

Figure 2.1.  Inline assembly and C code snippet that prints “Hello, World!!!” 

The two types of disassemblers produce dramatically different disassemblies of 

the above code as shown in Figure 2.2.  Notice how the minor obfuscation of the single 

data byte (0x00) completely baffles WinDbg, a linear sweep disassembler, but does not 

fool OllyDbg, a recursive traversal disassembler.  OllyDbg is more robust, because it not 
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only translates the JMP instruction, but also considers the instruction’s function when 

determining where to resume disassembling.  This example also shows how WinDbg 

misses the correct disassembly of the next four instructions and only resynchronized on 

the return instruction (RET and RETN).  The instruction reach of the opcode shift is the 

number of instructions missing from the original (or correct) disassembly.  For this 

example, the instruction reach for the opcode shift in WinDbg is four, because WinDbg is 

missing four instructions from the correct disassembly shown in the OllyDbg output. 

 

 
Figure 2.2.  Disassembly of linear sweep and recursive traversal disassemblers 

WinDbg (linear sweep) output:  
00401000   EB 01          jmp 00401003  
00401002   00 68 D8       add byte ptr [eax-28h],ch  
00401005   70 40          jo 00401047  
00401007   00 E8          add al,ch  
00401009   06             push es    
0040100A   00 00          add byte ptr [eax],al  
0040100C   0083 C40433C0  add byte ptr [ebx-3FCCFB3Ch], 
                                 al 
00401012   C3             ret 

OllyDbg (recursive traversal) output:  
00401000   EB 01          jmp short 00401003 ; logic 
00401002   00             db 00              ; data byte 
00401003   68 D8704000    push 004070D8      ; (printf 
00401008   E8 06000000    call 00401013      ;   instr.) 
0040100D   83C4 04        add esp,4 
00401010   33C0           xor eax,eax 
00401012   C3             retn 

Various opcode prefixes shift the code by different shift amounts.  The shift 

amount is the number of bytes that the disassembler takes from the instruction after the 

data byte (false opcode prefix).  In this example, the shift amount is two, because the 
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disassembler absorbs the next two bytes (the 0x68 and 0xD8).  Opcode shifts do not 

always result in a sequence of mangled instructions.  Stealthy opcode shifts cleanly 

absorb subsequent instructions by aligning on a correct instruction boundary.  In the 

above example, an opcode shift with a shift amount of five bytes (a five-byte shift) would 

completely absorb the PUSH instruction and leave the CALL instruction untouched.  

Opcode shifts that do not align on a correct instruction boundary are non-stealthy. 

The recursive traversal disassembler is harder to fool than the linear sweep 

version.  However, the fact that recursive traversal disassemblers rely on the instruction 

itself to determine the address to resume disassembly is a vulnerability.  If presented with 

two equally viable options or an abnormal program execution flow, even a recursive 

traversal disassembler has difficulty. 

One primary focus of anti-reverse engineering is the prevention of static analysis 

of the protected code in a disassembler.  Malware employs a wide range of strategies to 

accomplish this goal.  Obvious disassembly techniques include encryption and 

compression (or packing) of the binary executable.  Obfuscating the final executable 

complicates analysis and reverse engineering.  In some cases, applying obfuscation 

transformations to the binary executable, such as opcode shifts, confuses disassemblers 

and requires human intervention. 

2.4.1.1. Encryption 

The general structure of malware programs that use encryption (or packing) 

includes an executable decryptor section, which is unencrypted, as well as an encrypted 

(or packed) section [Szo05, Eil05].  The program uses the decryptor to decrypt the 
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remaining portion of the malware application immediately prior to its execution to protect 

the program contents for as long as possible. 

Software authors can use strong encryption to delay the disassembly of their 

applications.  Without the proper decryption key or algorithm, the encryption defeats both 

static and dynamic analyses.  An attacker must either defeat the encryption algorithm 

itself or find another way to obtain the decryption key.  After obtaining the key, the 

attacker can decrypt the encrypted binary revealing the binary executable.  This situation 

is optimal for reverse-engineering, because the reverser can perform static and dynamic 

analysis on the deciphered application.  In many cases, the reverser can dynamically 

analyze the program, because many programs decrypt themselves during execution. 

The decryption method can use an internally or externally stored key.  A 

developer can store the decryption key in the program—possibly in an encoded form or 

calculate it at runtime.  On the other hand, the developer could store the key external to 

the program either on a local hardware device or on a remote key server.  In the latter 

scenario, the program requests the key from the key server at runtime and the server 

would only provide the encryption key after authenticating the client. 

A malware application’s weakness is that it must eventually use the appropriate 

decryption key or employ the decryption algorithm [Eil05].  Virus writers do not use the 

key server approach for fear of prosecution (and obvious lawsuits).  Nevertheless, 

without the decryption key, their malicious software does not execute properly.  

Therefore, typical malware applications do not use strong encryption because of the 

performance and storage overhead.  The malware writer wants the code to execute, so 
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they must supply the decryption key or algorithm anyway.  For these reasons, malware 

ciphers normally are simple, such as a short XOR, shift, or offset cipher.  The 

W95/Fix2001 worm [Fix99] uses weak encryption to conceal a destination e-mail address 

to which it sends stolen account information [Szo05]. 

The main reason malware programs use encryption is to evade detection and to 

obfuscate itself to prevent disassembly.  Typically, malware applications encrypt the 

main program body with a new encryption key for future generations to avoid detection.  

These techniques force anti-virus researchers to develop signatures targeting the 

relatively small (albeit static) decryptor sections of malware programs.  There are other 

methods of avoiding detection such as stealth, but the general purpose is the same, to 

make the task of anti-virus researchers more difficult [Erd04]. 

Encryption has several weaknesses.  In most cases, a reverser can use an 

unpacking program to decrypt an executable automatically [Eil05].  However, if the 

program generates or builds the key at runtime, the attacker cannot unpack the program 

automatically.  Another tactic is to wait until the program decrypts itself in memory and 

simply capture the clear code from memory.  Some malware authors mitigate these 

weaknesses by decrypting short segments of their code into memory immediately prior to 

execution.  By doing this, the reverse engineer has a more difficult and potentially tedious 

job. 

2.4.1.2. Compression and Packing 

Compressed (or packed) and encrypted malware share the same architecture.  

Compressed malware has a small, uncompressed section that decompresses the remaining 
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portion of the program before execution.  The compression of the malware application 

offers a distinct advantage over encryption.  The program is likely much smaller than an 

encrypted form of itself. 

Compression and packing causes problems for disassembly.  In most cases, static 

analysis is not possible until the program decompresses or unpacks itself.  Dynamic 

analysis is possible when the packing mechanism is present and the malware correctly 

unpacks itself.  If the malware fails to unpack itself correctly, erratic behavior results.  

Malware authors have over 500 different packer programs to choose from, but not all of 

these are effective [Szo05]. 

Compression tactics save precious malware space, and they hinder the reverse 

engineering process.  Once a user discovers malware in the wild, researchers quickly 

develop anti-virus signatures and removal programs to eradicate them.  Slowing down the 

anti-virus companies’ analysis of the malware code effectively delays the development of 

anti-virus signatures and removal programs allowing them to propagate further and cause 

more damage.  The infamous W32/Blaster worm [Bla05], an example of packed 

malware, uses the UPX packer for both compression and obfuscation [Szo05]. 

2.4.1.3. Obfuscation 

Obfuscation is a common technique in software protection to reduce an 

application’s understandability.  Defending software from reversing runs counter to the 

tenets of software engineering.  To promote maintainability, software practitioners advise 

developers to write more understandable code and to use comments to promote 

understanding by others.  Obfuscation is the opposite of this, because the goal is to make 
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the practitioner’s code even more confusing than it was originally.  The intention is to 

delay an attacker—not necessarily to prevent the attacker from successfully reverse 

engineering the code.  If this delay becomes significant enough, the presence of heavily 

obfuscated code might be a deterrent to an attacker.  The quality of obfuscation tactics is 

a function of four measures:  potency, resilience, stealth and cost [CoT97]. 

Potency measures indicate the relative difficulty in understanding software as 

originally designed versus obfuscated code.  Practitioners can use software complexity 

metrics, such as complexity profiling, to measure the potency of a particular obfuscation.  

Resilience measures how effective an obfuscating transformation is against an automated 

deobfuscator.  The amount of development time to build an effective deobfuscator and 

the execution time and space needed by such a tool are both acceptable measures for 

resilience.  Stealth measures reflect on how easy the process is to identify obfuscated 

parts versus non-obfuscated parts of the application.  Finally, cost measures specify how 

much impact the obfuscation has on the execution time and space of the original 

program. 

Collberg et al. [CoT97] propose four obfuscation transformation categories:  

layout, data, control, and preventive.  Each category of transformation has its own unique 

measures of potency, resilience, stealth, and cost.  The main goal is to achieve the desired 

level of obfuscation (and hopefully reverse engineering difficulty) while staying within 

the cost budget in execution time and space. 

Layout Transformations.  Layout transformations target source code and include 

such tactics as changing variable identifiers to another form—possibly gibberish—that 
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lends no understanding to the program based on their name and their use in the program.  

Changing formats and inserting or deleting comments is also used in this transformation.  

These types of modifications target source code—not the binary executable with the 

possible exception of the symbol table.  These types of transformations have a variable 

potency, low resiliency, and very low stealth.  However, layout transformations are very 

favorable with respect to cost, because the transforms do not significantly affect the final 

application’s execution time and space [CoT97]. 

This tactic is most useful in situations where security experts may inadvertently 

(or intentionally if an insider threat) expose source code to attackers.  In certain 

situations, this disclosure is inevitable, but it is also a common practice for organizations 

to refrain from inadvertently divulging the source code to adversary reverse engineers.  In 

some of these cases, the software protection community can adopt other security 

precautions (e.g., physical security, non-disclosure agreements, etc.) to prevent such 

disclosure. 

Data Transformations.  Data transformations increase the complexity of data 

structures.  An example of these transformations is changing the representation of a 

Boolean to encoded values of the ordered pair of two separate integers.  Although the 

original Boolean can only have one of two values, the ordered pair of two integers can 

assume a large number of different values when represented by two typical 32-bit 

integers.  Building strings at runtime instead of hard coding a constant string can 

complicate the attacker’s task of locating a specific part of a program.  This can be used 

as a license or decryption key protective measure.  Data aggregation transformations, 
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such as decomposing arrays and classes or merging primitive variables, increase potency 

and resilience.  An obfuscation transform can scramble array indices to randomize the 

order that the program stores data.  Specific data transformations have various levels of 

potency, resiliency, stealth, and cost [CoT97]. 

An interesting example of data transformation in viruses is the absence of 

standard API names in the program.  Instead of using common strings that anti-virus 

applications can search for, malware uses checksum values of API function names to find 

them during execution.  The absence of common search strings confounds anti-virus 

scanners and therefore obfuscates the malware code.  The W32/Dengue virus [Den00] 

does not use any function name strings to access the Win32 API [Szo05]. 

The SAVE scanner claims to be highly efficient by basing malware signatures 

primarily on API call sequences [XuS04].  However, SAVE disassembles the executable 

and searches for key opcodes (namely CALL instructions).  As a program executes, it 

may overwrite seemingly benign instructions with CALL instructions that SAVE misses.  

These camouflaging techniques can prove problematic for purely static analyses.  Besides 

using the API name checksums, a CALL instruction can be hidden by pushing appropriate 

data onto the stack (e.g., the return address) and performing a JMP instruction with the 

address of the desired API function [IA105].  When the called function returned, it would 

pop the correct return address off the stack. 

Control Transformations.  Control transformations obscure the program flow of 

the application and make it very difficult to follow [CoT97].  An obfuscator can create 

opaque predicates or calculations that always result in a true or false, to provide stealth to 
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other obfuscations.  These opaque predicates create false branches that waste reversers’ 

time.  The attacker or their deobfuscator must thoroughly analyze these constructs, which 

can include non-obvious, multiple-variable expressions, to determine if a particular 

branch is possible.  Opaque constructs camouflage dead code spurs inserted as alternative 

branches, which further complicates reverse-engineering efforts.   

Other forms of control transformations include meaningless code injects as well 

as the removal of real procedural abstractions (inlining) and the insertion of false 

procedural abstractions (outlining).  Concurrent programming constructs (multithreading) 

are one of the most effective methods of obfuscating static analysis although it can be 

costly in terms of performance.  The application can spawn decoy threads as well as split 

actual program logic into multiple threads while using synchronization points to control 

program flow.  The obfuscator can disrupt the locality of program code by changing the 

order of statements to increase the distance between logically related statements.  

Reversers tend to rely on locality to understand a program because locality implies a 

logical order [Eil05].  Other control transformations include loop unrolling, code 

flattening, and recursion. 

Preventive Transformations.  In contrast to the previous three conversions, 

preventive transformations focus almost entirely on hindering automated deobfuscation 

tools.  This approach includes both inherent and targeted preventive transformations.  

Inherent preventive transformations exploit known automatic deobfuscation techniques.  

For instance, a deobfuscation tool may analyze an obfuscated FOR loop that executes 

backward and realize that it could convert the loop to forward execution.  However, by 
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placing a bogus data dependency variable in the loop, its obfuscation may be too 

ambiguous for the deobfuscation tool.  Targeted preventive transformations exploit 

known weakness of specific automated deobfuscation tools.  This tactic may only work 

against specific versions of the tool or under certain conditions [CoT97]. 

2.4.1.4. Self-Mutation 

Many malware applications routinely change their appearance to avoid detection.  

Self-mutation can take the form of polymorphism and metamorphism.  Self-mutation can 

change the code to be completely different from previous generations or change certain 

parts to confuse detection programs.  Insertion or deletion of garbage code (similar to 

obfuscation techniques described earlier) is also a form of self-mutation.  Malware 

benefits from its obfuscation, which confuses reverse engineers, but the ability to avoid 

detection is the primary advantage.  All of these strategies have the goal of avoiding anti-

virus detection programs and complicating the development of an exhaustive set of 

malware signatures. 

Oligomorphism.  Oligomorphic viruses alter their decrypters for subsequent 

generations [Szo05].  Anti-virus software has little choice but to develop signature 

patterns based solely on these smaller decryptor sections of malware code, because 

viruses normally change their encryption keys during propagation.  Using multiple 

decryptors during propagation complicates the detection process.  The malware 

community develops numerous decryptors rather easily.  Oligomorphic tactics in 

malware are effective against signature scanning, because future generations (infections) 
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often do not resemble their ancestors at all, since the historically static portion of the 

program is now dynamic. 

To complicate the discovery, some malware employ a completely different 

decryptor during replication.  The new decryptor could simply be a different 

implementation of the same algorithm or a new algorithm altogether.  Nevertheless, this 

approach complicates the construction of suitable anti-virus signatures, because scanners 

need multiple signatures to ensure success against a single virus. 

Some viruses use a probability scheme to complicate matters further.  For 

example, a particular decryptor may only be used occasionally.  Therefore, not only do 

anti-virus researchers need to develop multiple signatures, but to accurately recognize a 

particular virus, they must develop an exhaustive set of signatures for the virus in 

question.  The Whale virus [Wha06] uses oligomorphic tactics and carries dozens of 

different decryptors as it replicates [Szo05]. 

Polymorphism.  When related to malware, the term polymorphism has a different 

meaning than its standard meaning in software engineering.  The term polymorph literally 

means many forms.  In software engineering, this refers to a function or method having 

many forms depending on the invoking class.  In malware, the term polymorphism refers 

to the ability of the decryptor to assume many different forms in future generations. 

Polymorphic viruses do not keep a small set of decryptors, but rather mutate their 

decryptors possibly generating millions of different forms.  Although the current 

decryptor can mutate by simply inserting garbage instructions, there are more advanced 

polymorphism implementations.  In 1991, the Bulgarian virus writer Dark Avenger 
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released a modular, polymorphic mutation engine called MtE [Szo05].  This tool accepts 

virus code as input and transforms it into a polymorphic virus.  By passing certain 

parameters to the mutation function, the MtE outputs a polymorphic decryptor and an 

encrypted virus body.  The ability to develop an exhaustive set of signatures to detect 

polymorphic viruses is a function of the number of unique decryptors that a polymorphic 

engine can develop.  However, once researchers thoroughly analyze a polymorphic 

engine, they can target similarities that all viruses made with the same engine share. 

Metamorphism.  Metamorphic viruses do not need decryptors, because they 

manipulate themselves altering their appearance beyond recognition.  One can think of 

metamorphism as low-scale obfuscation that occurs during propagation.  Various viruses 

implement a variety of metamorphic techniques including manipulating and recompiling 

source code, reordering binary subroutines and independent instructions, replacing 

instructions with equivalent instructions, reversing conditions, and inserting garbage 

instructions.  Each alteration generates a number of new forms the virus can assume, 

which makes the task of developing an effective virus scanner difficult.  As an extra 

protection, when metamorphic viruses replicate, they do not assume a form akin to their 

parents. 

The W32/Apparition virus [App05] carries its source code with it and recompiles 

itself whenever it finds a compiler installed.  Before recompiling, W32/Apparition 

performs obfuscating layout transformations that mutate its source by inserting and 

removing junk code.  By mutating the source code instead of the binary, the compiled 

binary looks quite different in future generations [Szo05].  Although carting source code 
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around is somewhat foolish from a software protection viewpoint, other methods of 

metamorphism still have potential applications. 

Some viruses, like W32/Ghost, change the order of subroutines to generate a large 

potential set of mutations for progeny [Szo05].  Although not the only metamorphic 

change possible, changing the order of subroutines is a good example to show how many 

variants are feasible.  W32/Ghost has 10 subroutines and it can generate up to  

  possible permutations based on subroutine reordering alone.  Anti-virus 

software can still detect these different combinations based on search strings, but this 

type of scanning is not as effective since the target string could modify itself and 

effectively hide from the scanner. 

10! 3,628,800=

For many assembly instructions, alternative instructions (or a series of other 

instructions) can have equivalent functionality.  For instance, the assembly instruction 

XOR EAX, EAX is the equivalent of SUB EAX, EAX as both set the EAX register to 

the value of zero.  The only difference between the two functions is the state of the AF 

flag [IA205].  There are other equivalent, single-instruction methods of setting a 

particular register value to zero as well. 

Inserting garbage statements is also an effective method of foiling anti-virus 

signature matching.  In fact, in their experiments with four viruses, Christodorescu and 

Jha found that commercial anti-virus products failed to detect the viruses after simple 

obfuscation [ChJ03].  Perhaps the most surprising finding was the fact that the only 

obfuscations required to evade the scanners were NOP insertions and code transpositions.  

22 



 

These methods, especially when used together, make the detection of such malware 

applications very difficult—even for commercial scanners. 

The W32/Evol virus [Evo00] uses even more metamorphic techniques.  This virus 

exchanges assembly instructions for others with equivalent functionality, changes the 

order of subroutines, inserts garbage statements, and even changes the values of magic 

numbers [Szo05].  (Magic numbers are direct, hard-coded references to numbers instead 

of traditional constants in code [Wik06].)  By modifying all of these components, the 

W32/Evol virus becomes even more difficult to detect.  Anti-virus scanners normally 

detect viruses by searching for a signature within the virus, but as the signature becomes 

smaller, more missed detections and false alarms result. 

Furthermore, these mutations are probabilistic.  In practice, a virus may only use a 

particular morphing transform occasionally.  This chance occurrence complicates the 

anti-virus reverse-engineering process more, because a morphing might not ever occur 

during examination.  Rare mutations complicate the task of developing a reliable scanner 

to detect the particular morphed version. 

Malware metamorphoses primarily during the propagation stage.  However, 

metamorphosis can occur at other milestones (e.g., prior to or after execution) changing 

the form of the executable often.  An advanced metamorphic engine can metamorphose 

the program even during execution. 

Metamorphism adds another level of difficulty to reversing a control 

transformation obfuscation such as a function caller.  Consider a simple function caller 

that takes an enumerated argument to determine which function to call.  Figure 2.3 shows 
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the C code for a simple function caller procedure.  (The flowchart-like symbols to the left 

of the source code are a control structure diagram courtesy of jGRASP [jGR04].)  The 

function caller manages which function to execute.  In this case, the developer relays 

calls to specific functions through the function caller.  The function caller architecture 

serves as a control obfuscation, because a reverser would have difficulty determining the 

target function to which the function caller actually relays the call.  Metamorphism can 

add complexity to this issue by randomly reordering the target functions (i.e., f1 and f2 

in this example).  Since only the function caller needs to know the function locations, this 

 

  
Figure 2.3.  Example source code for simple function caller 
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simplifies function reordering.  After reordering, direct calls to the target functions will 

likely cause the program to fail, because the function boundaries have changed. 

Some other potential metamorphic transforms, whose existence in malware is 

uncertain, can provide more obfuscation as well.  For example, transforming a random 

sequence of instructions into a subroutine (outlining) [Eil05] has minimal impact on 

function, but certainly changes the structure (or form) of the program.  Any registers 

manipulated in the subroutine become desirable side effects for the defender.  Using 

recursion for short loops adds complexity to the executable at the expense of some stack 

overhead.  Finally, multithreading transforms can fracture a program into multiple 

threads of execution further complicating reverse engineering efforts. 

2.4.2. Anti-debugging 

The ultimate goal of anti-debugging is to prevent reverse engineering of software 

through dynamic analysis.  Programs have many ways to detect if a debugger is present.  

Anti-debugging is a basic defense against dynamic analysis and there are diverse methods 

to thwart an attacker’s efforts. 

Debuggers execute code within the debugger’s controlled environment.  Two 

basic features that a debugger offers are the ability to set a breakpoint, where the program 

execution is interrupted and the debugger regains control, and the ability to step through 

the program one instruction at a time. 

There are two types of breakpoints: software and hardware.  When setting a 

software breakpoint, the debugger usually replaces the first byte of an instruction in 

memory with a breakpoint interrupt (INT 3)—0xCC on an Intel processor.  When the 
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processor sees the 0xCC byte, it generates an interrupt that the debugger catches.  Once 

received, the debugger replaces the 0xCC byte with the original first byte of the 

instruction and pauses program execution for the user. 

The processor itself manages hardware breakpoints via its debug registers 

[IA305].  Since the processor manages the hardware breakpoint, the debugger has no 

need to set breakpoint interrupts in the process memory space.  However, the processor 

can only manage a limited number of hardware breakpoints due to resource limitations 

(i.e., a limited number of debug registers are available for storing breakpoint addresses). 

The debugger provides the functionality to step through the program by enabling 

the processor’s trap flag [Eil05].  Enabling this flag causes the processor to generate a 

single-step interrupt (INT 1) after executing each instruction.  The debugger can catch 

these instructions and regain control allowing the user to analyze the state of the 

debugged program. 

Many anti-debugging protections try to cause the debugger to lose state.  As a 

debugger executes a program, it must keep track of the program’s state (i.e., variables, 

register values, stack contents, etc.).  However, the debugger uses these resources as well, 

because the operating system shares these resources among several tasks (multitasking).  

Since the debugger cannot query the system state while the target process (of the 

debugger) executes, it must rely on the state information that it has gathered.  Anti-

debugging techniques include any methods that cause the debugger to lose or change any 

of its state information. 
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2.4.2.1. Debugger Interrupt (INT) Manipulation 

Malware applications commonly hook interrupts causing debuggers to lose the 

executing code’s context [Szo05].  Viruses hook interrupts by loading themselves into 

memory and modifying the interrupt vector table (IVT) to point to themselves instead of 

the normal interrupt handler.  This places the virus at the beginning of the interrupt call 

chain for that particular interrupt.  Viruses commonly hook the single-step (INT 1) and 

breakpoint (INT 3) interrupts.  As previously mentioned, debuggers commonly use 

these interrupts for stepping through and pausing programs for analysis.  Some viruses 

use these interrupts in their decryption routines.  Other viruses overwrite the interrupt 

handlers that debuggers normally use with interrupt return (IRET) instructions ultimately 

causing debuggers to lose state. 

Another defense is to disable the keyboard.  This tactic prevents reverse engineers 

from easily stepping through the program code, because they cannot use their 

keyboards—often a required resource for debugging.  Disabling debugger hotkeys stops 

users from breaking into a program after it has started execution.  The Cryptor virus 

actually uses the keyboard buffer to store its decryption key [Szo05].  When a debugger 

runs the program, it also uses the buffer and thereby destroys the decryption key. 

2.4.2.2. Guarding Against Debugger Breakpoints 

Other malware applications use checksums to verify that the code executing in 

memory remains unchanged.  The program calculates a checksum of the malware code 

and stores it.  Running the code in a debugger changes the code by inserting software 

breakpoints (INT 3 – 0xCC) in place of the first byte of assembly opcodes.  The 
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debugger must keep track of the replaced byte to continue execution correctly.  Even 

though it replaced a byte of an instruction opcode, the debugger displays the correct byte 

to the user for readability purposes.  This additional byte changes the checksum of the 

actual program in memory when the malware application attempts to verify its integrity. 

Some viruses also decrypt themselves backwards overwriting software 

breakpoints in the process.  The W95/Marburg virus [Mar98] uses this technique.  The 

software protection community could adopt methods like these as well—at little cost in 

program performance and size. 

Viruses can use the hardware debug registers (e.g., registers DR0-DR7 on Intel 

architectures) to cause problems for some debuggers.  Debug registers are privileged 

resources used by debuggers to monitor breakpoints [IA305].  Viruses could disable all 

breakpoints by toggling them off via the debug control register, DR7. 

Incidentally, some viruses are self-annealing, which means they can detect and 

correct small errors.  Self-annealing viruses correct or disable breakpoints and thereby 

exhibit anti-debugging characteristics.  The Yankee Doodle virus employs such tactics 

[Szo05]. 

2.4.2.3. Observing and Using Debugger Resources 

Another trick malware authors use to detect debuggers is simply to observe the 

top of the stack.  Debuggers often push trace information onto the stack during execution, 

which a malware application can easily detect.  If a virus detects debugger information on 

the stack, it may conceal itself by letting the infected program function normally. 
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In addition to observing the stack, some viruses use the stack to build a decryption 

key or to decrypt their programs.  If the debugger manipulates the stack as well, the virus 

cannot successfully decrypt itself and therefore does not execute (or expose itself to 

debugging). 

2.4.2.4. Debugger Detection 

A direct approach is to invoke an operating system (OS) application programming 

interface (API) function such as the IsDebuggerPresent() function in Windows 

[MSD05, Szo05].  This particular call returns a Boolean value indicating whether the 

current program is executing in a debugger.  Although simple to implement, this strategy 

is easy to detect by searching for the key string.  However, by using checksums of API 

functions instead of the function name itself (c.f. Section 2.4.1.3), the malware program 

can be obfuscated and avoid key string searches. 

Malware can also scan through the registry for debugger keys.  If the program 

finds a debugger key, the malware may behave in a different manner—perhaps not 

executing at all.  Such activity can increase the difficulty of the reverse-engineering 

process because a reverse engineer must normally locate and disable the anti-debugging 

features first. 

If a debugger requires loading a particular driver, the virus program could check 

for that driver in memory.  In addition, the malicious program can scan memory 

(including video memory) for other indicators of a debugger’s presence. 
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2.4.2.5. Debugger Obfuscation 

Other anti-debugging techniques do not use hooking, detection, or resource 

consumption.  Many debuggers cannot follow a program during exception handler 

execution, which is another situation where the debugger can lose state information and 

ultimately fail.  Obfuscating the file format or the entry point can confuse debuggers that 

work only with standard formats and entry points [Szo05].  In short, any technique that 

causes the debugger to trace the wrong execution (or not follow the correct) path should 

result in the debugger ultimately losing state and failing. 

2.4.3. Anti-Emulation 

Emulation mimics a program’s execution.  All modeling is necessarily 

incomplete, but an emulation is a low-fidelity representation that focuses primarily on 

modeling program behavior—not functionality.  Simulations, although still imperfect, are 

higher-fidelity representations of program execution on another platform.  Since it is an 

incomplete model of program functionality, many opportunities exist to fool emulators. 

Anti-emulation tactics commonly use obscure functions.  Many emulators do not 

model such functions and some even omit them entirely during execution.  Examples of 

such functions include coprocessor, MMX (multimedia extension), and undocumented 

CPU instructions [Szo05].  Simply using these obscure functions can cause an emulator 

to fail by losing state. 

Another broad category of anti-emulation techniques uses various denial-of-

service attacks against emulators.  A wily defender can exploit an emulator’s limited 

resources in similar fashion as the classic denial-of-service network attacks.  For 
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example, some viruses decrypt themselves by intentionally brute forcing their own 

encryption, which might require millions of emulation iterations to finish decrypting.  

The slower emulation process prolongs the time needed to decrypt the virus body for 

analysis.  Other similar denial-of-service tactics use long, complex loop constructs to 

calculate a decryption key.  This can fool an emulator into consuming significant 

amounts of its available resources (i.e., memory). 

2.4.4. Anti-Heuristic 

Anti-virus researchers develop heuristic scanners to detect new viruses without 

new virus signatures.  As with intrusion detection systems, the developer (or user in some 

cases) chooses a sensitivity level low enough to detect new viruses, but high enough to 

minimize false positives.  Commercial anti-virus products commonly use heuristics such 

as the file infection area, because many viruses tend to infect either the beginning or end 

of files.  However, a scanner cannot use the same heuristic to detect viruses that follow 

other infection strategies, such as cavity or overwriting infections. 

Heuristic pattern matching potentially offers a better solution than traditional 

signature-based scanning, because signatures are not needed for each individual virus.  

However, detection of an unknown virus is only half the battle; developing a tool that 

effectively removes the malicious code and repairs the infected file is the other half. 

2.4.5. Anti-Goat (Anti-Bait) 

Anti-virus researchers sometimes use special goat (or bait) files to reveal malware 

infection techniques [Szo05].  Some of these infection methods are trivial, such as adding 

the virus code to the end of the file and replacing the file’s first instruction with a jump to 
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the virus code.  Other more advanced infections make the viruses more difficult to detect.  

However, tricking a virus into infecting a goat file, which typically consists of a series of 

NOP instructions, can easily show a virus’s infection method. 

Viruses infect host files in a variety of ways.  Prepending and appending viruses 

use two of the simplest infection methods by inserting the virus code at the beginning and 

end of the host file respectively.  A cavity infection targets available areas in the file large 

enough to hold the entire virus.  On the other hand, a fragmented cavity infection breaks 

up the malware code to fit any available cavity in the target host file. 

To complicate the anti-virus researcher’s task, virus writers implement anti-goat 

protections to prevent casually infecting goat files.  Normally, the anti-goat viruses 

heuristically determine if infection is appropriate.  Some heuristics include not infecting 

small files or files containing numerous NOP instructions.  However, in the end, virus 

writers must strike a balance between their making their programs too reckless or too 

cautious in their infection habits.  A reckless virus infects most goats, because its 

heuristics are too optimistic.  On the other hand, a cautious virus is not infectious enough, 

because its heuristics are too pessimistic. 

2.5. Summary 

This chapter introduces the premise that the software protection community 

should consider potential applications of unique defensive mechanisms found in 

malware.  A discussion of common anti-reverse engineering strategies used by malware 

authors highlight a category of measures.  Anti-disassembly, anti-debugging, anti-

emulation, anti-heuristic, and anti-goat categories loosely capture the broad range of 
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malware defensive techniques.  This chapter highlights the similarities between the 

software protection strategies of both non-malicious and malicious software authors even 

though they have a stark contrast in motivation. 

This chapter also introduces the defensive strategy of metamorphism and 

describes it as dynamic obfuscation.  Several metamorphic transforms can provide useful 

protection to non-malicious software. 
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3. III. Methodology 

3.1. Chapter Overview 

This chapter describes the research experiments.  It begins with a presentation of 

the research goals and the approach taken to achieve those goals.  Following sections 

define the system under test, the component under test, and the system services.  Next, a 

discussion follows of the applied workload and the definition of the performance metrics.  

Subsequent sections present the experimental factors and parameters as well as the 

evaluation techniques used.  Finally, the last section presents the experimental design. 

3.2. Problem Definition 

3.2.1. Goals 

This research assesses the performance overhead of a representative sample of 

metamorphic transforms, specifically opcode shifting and subroutine reordering.  These 

experiments utilize regression models for precisely evaluating performance overhead of 

opcode shifting transforms.  A final goal of this research is to determine the capabilities 

of metamorphic opcode shifting and subroutine reordering.  A proposal for 

implementation procedures based on experimental findings is presented. 

3.2.2. Approach 

This research develops a metamorphic engine (MME) that reorders subroutines 

and modifies assembly instructions in memory during execution.  This engine integrates 

with target applications for testing.  As mentioned in Chapter 2, there are a large number 

of metamorphic transforms.  A representative list of metamorphic transforms includes 

[Szo05, Eil05]: 
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1. Instruction substitution (replacing instructions with functional equivalents) 

2. Instruction reordering (shuffling the order of instructions where possible) 

3. Subroutine reordering (shuffling the order of subroutines) 

4. Register substitution (shuffling register usage) 

5. Recursion insertion (using recursive solutions versus iterative ones) 

6. Program fragmentation (arbitrarily breaking up a program into subroutines) 

7. Morphing of instructions in pipeline (changing instructions already fetched) 

8. Garbage instruction insertion (inserting meaningless instructions) 

9. Execution flow altering (changing execution flow (e.g., executing in heap)) 

10. Opcode shifting (calling/jumping into middle of instruction) 

 

This research develops a MME that implements representative samples of these 

transforms.  The following sections describe the process for choosing the sample 

transforms along with the detailed discussion of the transforms themselves.  In this 

experiment, the main program contains a call to the MME to modify other parts of the 

program.  The main program also collects performance metrics for subsequent analysis. 

Morph points provide a mechanism for identifying points in a program that can be 

modified by the MME during runtime.  Each morph point is associated with an address, a 

probability for changing, and a set of replacement values.  Within a program, an instance 

of an opcode shift construct is a type of morph point.  Logical replacement values for an 

opcode shift morph point include a set of instruction prefixes that cause disassemblers to 

display incorrect instructions. 

This research defines two sets of experiments to meet the research goals due to 

the metrics evaluated.  For instance, determining the instruction reach of a morph point 

opcode shift requires executing the program inside a debugger.  On the other hand, 
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running the performance-based tests inside a debugger generates near meaningless 

metrics, because the debugger overhead itself is included. 

Two performance experiments evaluate the execution overhead of opcode shifts 

(via the morph point constructs described earlier) and subroutine reordering.  The time 

required to perform each transform (i.e., change the program) is measured in addition to 

the execution overhead of the modified functions.  These experiments directly measure 

the execution time of baseline and metamorphic versions of the same test program.  With 

these results, the performance overhead of the metamorphic transforms is calculated by 

subtracting the execution time for the baseline from the execution time for the 

metamorphic version. 

Another experiment assesses the instruction reach of an opcode shift construct.  

This instruction reach experiment executes within the context of a debugger and the 

opcode shift instruction reach is reported while stepping through the code. 

3.3. System Boundaries 

The system under test (SUT), as shown in Figure 3.1, consists of the CPU, main 

memory, the benchmark program, and the debugger.  Although applicable to numerous 

platforms, many facets of these research implementations are hardware dependent when 

the implementation utilizes non-portable, low level constructs like assembly language 

instructions. 

The components under test (CUT) are the morph points (instances of opcode shift 

constructs) and the metamorphic engine.  Multiple morph points are inserted into the 
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code where they execute millions of times.  The metamorphic engine modifies these 

morph points during runtime. 

 

CPU Memory

SUT

Benchmark
Program

Debugger

 
Figure 3.1.  System Under Test (SUT) definition 

3.4. System Services 

The MME transforms an executable block of code into a different form with the 

same functionality.  Two outcomes are possible from this transformation.  The following 

constitutes a successful metamorphic transform: 

 
1. the program executes and produces the expected output, and 

2. any changed block of code executes with the same functional result (code size 
and execution performance are irrelevant). 
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The MME must always produce successful metamorphic transforms.  Intuitively, 

the following definition applies for a failed metamorphic transform: 

 
1. the program fails to execute or it produces unexpected output, or 

2. any changed block of code does not execute with the same functional result 
(not considering code size or execution performance). 

 

3.5. Workload 

The workload is the NIST SciMark2.0 benchmark suite [PoM04].  This test 

program is selected because the C source code is readily available and a prototype MME 

(already written in C) integrated easily with it.  The suite’s five separate benchmark 

programs execute and provide a million floating-point operations (MFLOP) metric.  The 

benchmark consists of Fast Fourier Transform (FFT), Jacobi Successive Over-relaxation 

(SOR), Monte Carlo integration (MC), Spare Matrix Multiple (SMM), and Dense Unit 

Lower Matrix Factorization (LU) programs.  Each decomposes into a kernel function that 

executes the test and a set of utility functions. 

3.6. Performance Metrics 

The execution performance of the benchmark program is the primary metric.  In 

particular, any performance loss due to the metamorphic protections of the benchmark 

program is quantified.  The performance of the MME itself is another key metric. 

The instruction reach of the sample metamorphic transforms is assessed using the 

number of instructions in the baseline program that a successful morph point can mangle 

in the metamorphic program.  A mangled instruction is an instruction in the original 
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metamorphic program that does not exist at the same address in the disassembly observed 

during runtime.  The instruction addresses in the baseline program will not match the 

metamorphic program instruction addresses, because the morph point code shifts the 

addresses. 

Size metrics, such as executable size or memory usage, are not used although they 

seem like obvious choices.  Metamorphism introduces ambiguities to these terms, and 

these ambiguities devalue the potential metrics.  For instance, some transforms could 

copy code into another segment of memory and execute in the new memory segment 

rather than in the text or code segments.  The standard definition of executable size would 

likely not include these modified instructions. 

3.7. Parameters 

The system parameters are the system hardware (i.e., CPU, cache, memory, etc.), 

the operating system, the compiler, and the metamorphic transforms themselves.  Process 

execution time is largely dependent on the performance capabilities of the system 

hardware.  Precautions are taken to minimize effects of the parameters not selected as 

factors. 

The operating system, Microsoft Windows XP Professional Edition (SP2), is an 

important parameter, because it controls the scheduling of tasks on the system—including 

the component under test, the benchmark program.  Unfortunately, the experiment has 

only minor control over the OS scheduler.  In order to mitigate the effects of this 

parameter, the experiments are conducted on a dual processor computer.  Having an 

available processor for the OS tends to reduce the influence of the scheduler-driven 
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context switches.  The experiment system hardware is a dual processor (Intel Xeon 2.80 

GHz) machine. 

The compiler is also important, because different compilers produce code of 

varying efficiencies.  Compiler optimizations change the appearance of the generated 

executables significantly.  The crux of this experiment, however, is to evaluate the 

performance of the morph points—not the effects of the optimizations.  The goal, then, is 

to generate a metamorphic version of a baseline program that differs only by the presence 

of these morph points.  For this reason, compiler optimizations are disabled. 

The metamorphic transforms chosen include subroutine reordering and instruction 

opcode shifting.  These particular transforms show promise of dramatically changing the 

program appearance with simple modifications to the assembly code. 

The single most important parameter for these experiments is the MME and 

morph point implementations.  An inefficient implementation can result in performance 

metrics that hide the effectiveness of metamorphism as a protection.  On the other hand, a 

reasonable implementation may yield results that imply potential utility.  An 

overwhelming number of possible implementations exist and the term “reasonable” is 

relative.  The implementation used is the result of a brief spiral development effort testing 

each solution for what is considered to be reasonable efficiency.  Using implementation 

itself as an experimental factor is beyond the scope of this research. 

3.8. Factors 

The factors for both the morph point performance and function reordering 

experiments are the compiler and the benchmark program.  The two levels for the 
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compiler factor are the GCC C compiler (version 3.4.4) [GCC05] packaged in Cygwin 

[Cyg05] and the Microsoft Visual C++ .NET (VSNET) compiler from Microsoft 

Development Environment (version 7.1.3088) [Vis05].  These popular compilers are 

representative of compilers in widespread use.  The benchmark program factor has five 

levels, the five programs comprising the benchmark suite. 

The instruction reach experiment considers three factors:  the debugger, the 

compiler, and the opcode shift amount.  The debugger levels are Oleh Yuschuk’s 

OllyDbg (version 1.10) and DataRescue’s IDA Pro (version 4.6.0.809 SP1 32-bit).  The 

levels of the compiler factor are GCC compiler and the VSNET C compiler.  The levels 

for opcode shift amount are 1, 2, 3, 4, 5, 6, and 8 bytes, because the instructions’ 

displacement and immediate fields (1, 2, or 4 bytes each) allow easy achievement of 

these values. 

3.9. Evaluation Technique 

This research uses direct measurement of the system.  The number of CPU cycles 

can be used as another performance metric, but some situations may require extra cycles 

such as memory fetches (especially those missed in cache).  Direct measurement of 

execution time appears to be the most effective and available metric for this situation. 

3.10. Experimental Design 

The experimental design is full factorial for all tests.  For the performance 

experiments, the first factor, the compiler, has two levels and the second factor, the 

program, has five levels.  Therefore, the performance experiments require replicating 20 

unique tests (10 for the baseline program and 10 for the metamorphic program).  After 
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conducting a small sample of observations, it was determined that 200 samples would 

achieve an error level of ±0.5% of the mean for the performance tests. 

The instruction reach experiment has three factors:  debugger (two levels), opcode 

shift amount (seven levels), and compiler (two levels).  This experiment requires 28 

unique tests or observations.  Because the instruction reach experiment is not stochastic, 

it does not require replication. 

3.11. Summary 

This chapter defines the experiments conducted during this investigation.  

Beginning with a presentation of the problem definition, this chapter also identifies the 

boundaries of the system under test and the component under test.  After describing the 

system services, this chapter defines the applied workload.  The performance metrics are 

presented.  This chapter also lists the experiment parameters and factors and concluded 

with a description of the evaluation techniques and the experimental design. 
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4. IV. Model Design, Development, and Validation 

4.1. Chapter Overview 

Three distinct experiments comprise the majority of this research.  This chapter 

describes the design and development of the experiment components and rationale for the 

design decisions.  In particular, the MME went through several spiral development 

iterations, where the effectiveness of the prototype was evaluated and the information 

was used for the next spiral. 

4.2. Component Design 

This software experiment consists of only two significant components, the 

benchmark program itself and the MME.  This section describes the modifications made 

to the benchmark program as well as the development process for the MME. 

4.2.1. Benchmark Program Modifications 

The NIST SciMark2.0 benchmark suite needs modifications for use as a test 

program for these experiments.  Among the changes, the kernels that control the 

execution of the five test programs are modified to allow a fixed number of iterations.  

The benchmark also uses dynamic memory and a custom random number generator 

(RNG) during timing tests, which can cause non-deterministic results.  Data recording 

capabilities as well as validation features are required for this research.  To eliminate the 

time required to shift code in memory, morph points are added to the code as well.  

Finally, the benchmark uses extensive compiler optimizations, which yield dissimilar 

code for the baseline and metamorphic benchmark versions.  This research addresses all 

of these factors before running the final experiments. 
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The NIST SciMark2.0 benchmark kernels that control the execution of the five 

test programs initially used a stopwatch construct to determine how long it should 

execute.  This stopwatch reliance makes the total execution time of the program 

nondeterministic for sequential runs, because the tests complete when a time check 

occurrs and the minimum execution time has elapsed.  In order to remove this 

nondeterministic behavior, each kernel function is modified to run for a fixed number of 

iterations instead of checking against a minimum execution time.  The number of 

iterations is set to force the program to execute for at least three seconds per test. 

Initial tests with the baseline benchmark suite were non-deterministic for the 

Monte Carlo program.  Since this study requires a higher degree of determinism, the 

causes for the erratic execution times are investigated further.  Two sources for this 

erratic behavior, dynamic memory allocation and a custom RNG, are discovered.  In an 

effort to make the experiment more deterministic, the program is modified to use static 

memory constructs within the benchmark program itself.  After discovering that the 

benchmark still exhibits non-deterministic behavior, the custom RNG is also disabled by 

setting it to return a fixed value.  The fact that this modification changes the benchmark 

program is irrelevant considering the ultimate goal.  The goal of the performance 

experiments is to assess the predictability of the CUT, not to analyze the results of the 

benchmark program.  After accomplishing these changes, the program is ready for 

testing. 
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Functions to monitor and record the execution times for each test kernel are also 

added.  The benchmark generates tab-delimited, ASCII-text, output files for later 

analysis. 

Validation code is added to the benchmark by using preprocessor definitions 

during project compilation.  This code displays nearly one hundred intermediate 

calculations from each of the test programs.  The new benchmark versions are validated 

by comparing the validation outputs with the original SciMark2.0 baseline (with added 

validation code only) outputs. 

Adding metamorphic capabilities to the benchmark suite requires added hooks 

(function calls) to the MME functions.  Morph points are strategically placed throughout 

each of the test programs’ kernel and utility functions to avoid code insertion overhead at 

runtime.  Although the morph point placement is irrelevant for the performance-based 

experiments, the placement is important for analyzing the results of the instruction reach 

experiment.  Two key strategies are used to determine where to place morph points, 

spacing and construct coverage.  By placing the morph points at least 30 bytes apart, the 

experiment avoids morph points garbling the next morph point’s instructions.  The 

second strategy is construct coverage.  A variety of program constructs are preceded with 

morph points to generate experiment results that model the general case.  Placing morph 

points before conditional statements, various assignment statements, and function calls 

provided assurance against results biased towards specific cases. 

Metamorphic applications modify the code (or text) segment.  The access tags in 

the portable executable headers are modified to allow writes as well. 
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Assembly programs differing only with the presence of morph points and the 

presence of the MME are needed for the experiments.  All compiler optimizations are 

disabled and the resulting assemblies are compared.  The programs are identical except 

for the presence of the morph points and the MME. 

4.2.2. MME and Morph Point Development 

The MME modifies the program while it executes.  The simplest MME does this 

by modifying morph points.  Modifying morph points confuses a reverser by randomly 

changing strategically located data bytes.  Although a single morph point may not 

challenge a reverser much as Eilam alludes [Eil05], the same is not necessarily true of 

hundreds—or millions—of morph points.  This section describes different 

implementations for MMEs and morph points and identifies advantages and 

disadvantages for each. 

There are conceptually two different kinds of MMEs, soldiers and scouts.  

Soldiers take direct orders and the program must inform them of the exact location (via 

relative or absolute addressing) of the modification targets.  Scouts, on the other hand, 

find morph points by using a search algorithm.  Both of these implementations are useful, 

and they each have unique advantages over the other.  Soldiers are capable of precise 

modifications, such as reversing the conditions of a single branch statement while leaving 

others alone.  A scout implementation requires less work to integrate because the 

developer does not have to inform the MME of new morph point locations, if the 

compiler relocates them after each recompilation.  When using a scout implementation, 
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the developer must be certain that the scout does not destroy unintended code due to 

inadvertent binary search string matches. 

There are several types of morph points for opcode shifting and this research 

introduces two, distinct classifications.  The first assesses the stealth of the morph point 

for opcode shifts.  A stealthy morph point for opcode shifts precisely absorbs one or more 

subsequent instructions without causing ripple effects in the disassembly.  An example of 

a stealthy morph point would be a one-byte opcode shift that consumes a one-byte PUSH 

instruction.  A semi-stealthy morph point does not precisely absorb instructions.  That is, 

the opcode shift does not align perfectly on the instruction boundary of one of the 

original instructions. 

The second classification scheme for opcode shifting morph points addresses 

consistency.  In a homogenous group, all of the morph points have the same 

implementation.  A developer likely does not want to have identical morph points 

protecting a program, because an attacker can develop a simple tool that automatically 

finds and destroys them.  To avoid this consistency, the developer can choose a 

heterogeneous group of morph points.  The MME can also randomly alter the morph 

point implementations during runtime.  In these experiments, morph point always means 

a homogenous morph point implementation. 

Two relatively simple MMEs are produced.  Both are capable of modifying data 

bytes preceding a target instruction.  To shift opcodes, the program must meet two 

criteria.  The morph point construct must never allow the false opcode prefix to execute, 
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which would inevitably crash the program, and the morph must be believable to the 

disassembler. 

Several rather obvious control flow implementations address the first criteria.  

However, many reduce the believability of the morph.  Consider the assembly code in 

Figure 4.1.  This example shows a trivial morph point implementation that will only fool 

linear sweep disassemblers because recursive traversal disassemblers consider the jump 

instruction when determining where to resume disassembly.  The result of this 

implementation is an ineffective morph point. 

 

jmp Done
db 80h  ; prefix for an
db 00h  ; ADD instruction
Done:

; target instruction
 

Figure 4.1.  Simple morph point implementation 

Through experimentation, this research’s morph point implementations evolved to 

a level difficult for recursive traversal disassemblers to follow.  Although many of these 

implementations are straightforward, the following paragraphs briefly describe them.  

This research considers several implementations including the following: 

 
1. Adding a conditional with an opaque predicate 

2. Calculating a jump address 

3. Modifying the return address during subroutine calls 
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Adding a conditional statement with multiple jumps causes problems for recursive 

traversal disassemblers.  Figure 4.2 shows an opaque jump target.  The highlighted data 

bytes are the clearest jump target provided to the disassembler (from conditional jump at 

address 0x0040 10b6). 

 

 
Figure 4.2.  Opaque branch jump target with morph data bytes in OllyDbg 

The JMP EAX instruction does not provide enough information alone to 

determine where to resume disassembly.  Depending on the types of disassembly hints 

provided or already included in the disassembler, the tool may only have one option, to 

guess where the disassembly resumes.  The debugger assumes the JMP EAX instruction 

target address can only be determined at runtime.  The situation facing the disassembler 

is a lack of explicit information (i.e., the JMP EAX instruction) and some incorrect 
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information (the bogus JNZ instruction).  Amidst this ambiguity, the tool has difficulty 

determining the correct disassembly.  Figure 4.2 is a disassembly with hints.  Figure 4.3 

shows the disassembly generated by OllyDbg without any special disassembly hints. 

 

 
Figure 4.3.  Result of opaque branch with morph data bytes in OllyDbg 

Calculating jump addresses also causes problems for recursive traversal 

disassemblers.  Some calculations reveal just how simple fooling an advanced 

disassembler really is.  The idea is to load the jump address into a register and perform 

some simple operations on it before jumping to the target address.  In most cases, this 

technique tricks the disassemblers.  In fact, Figure 4.4 shows one of the simplest tricks to 

fool OllyDbg.  Loading an address into register EAX and simply jumping to the address 

in the register (i.e., JMP EAX) is enough. 
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Figure 4.4.  Simplest jump address calculation fooling OllyDbg 

During a call instruction, the processor pushes the current instruction pointer on 

top of the stack so execution can resume when the called subroutine ends.  However, the 

subroutine can modify the return address value on the stack causing execution to resume 

at a different location.  The return-address modification works extremely well against 

both IDA Pro and OllyDbg.  Figure 4.5 shows how IDA Pro attempts to handle this 

sequence.  The top disassembly window shows the morph function, which simply adds 

two bytes to the return address on top of the stack.  The bottom disassembly window 

shows the call to this function and another instruction.  This disassembly is obviously an 

error, because the two bytes following the function call are actually data bytes, but they 
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deceptively match the prefix for an ADD instruction.  In this case, the disassembler 

confuses the data bytes for an ADD instruction. 

 

 
Figure 4.5.  IDA Pro disassembly of morph point with function call implementation 

For these experiments, the function call implementation for morph points is 

selected because of its simple design and effectiveness.  This particular morph point 

implementation is useful for capturing certain metrics of interest, such as the total number 

of calls to morph points, and it never fails to fool any disassemblers during the 

development and testing of these experiments.  Unfortunately, the function call is also 

one of the slowest implementations, likely attributable to the overhead of the CALL 

instruction.  Table 4.1 shows a performance summary of the various morph point 

implementations just presented.  Despite its slower performance, this implementation is 

chosen for simplicity and its ability to capture metrics.  Furthermore, during all the 

development and testing, this implementation never failed to trick a disassembler. 

This study uses two different engines, a basic MME that only modifies morph 

points and an advanced MME capable of modifying morph points and reordering 
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functions.  The following subsections describe each implementation and highlight the 

differences between them. 

 
Table 4.1.  Average morph point execution time for 1 billion iterations 

Morph Point 
Implementation 

Avg Execution 
Time (s) 

JUMP to Label 7.003 ns 

Opaque Branch 20.533 ns 

Jump Address 
Calculation 23.053 ns 

Function Call 20.547 ns 

 

4.2.2.1. Basic MME 

The first version of the MME is a scout implementation that searches for morph 

points (as sentinel values) in the code.  Relying on a search engine can create problems 

when using an optimizing compiler.  Morph points that use a JMP instruction are 

sometimes optimized out of the final executable.  Debugging revealed that the JMP 

instruction in some morph points jumped to another JMP instruction.  Whereupon the 

compiler optimizes this and points the morph point’s JMP instruction to the target address 

of second JMP (instead of having a JMP to another JMP).  Whenever this situation 

occurs, the morph point is lost, because the resulting byte string for a far JMP is 

significantly different from a near JMP.  Due to this observation, a soldier 

implementation is adopted for the MME. 

The soldier implementation of the MME for the morph point experiment uses an 

absolute morph point address.  This is the second significant MME generated by this 
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research.  This MME randomly makes two key decisions, whether or not to morph and 

what amount of opcode shifting to use.  Keeping with a simple approach of only 

modifying ADD instructions for opcode shifting, only shifts from 1 to 8 bytes (excluding 

7 bytes) are possible.  The displacement and immediate fields are available for 

consuming additional bytes and each of these fields can be 1, 2, or 4 bytes long.  Figure 

4.6 shows a simplified format of this class of Intel instructions [IA105]. 

 

Prefix Opcode Displacement Immediate

0-4 Bytes 1-3 Bytes 1, 2, or 4 Bytes 1, 2, or 4 Bytes
 

Figure 4.6.  Simplified Intel instruction code for ADD instruction 

This MME uses the C-standard srand and rand functions for seeding the RNG 

and generating the random numbers respectively.  The MME can use other RNG sources 

as well, including the Windows cryptographic pseudo-RNG documented in the Secure 

Programming Cookbook [ViG03] or even a custom inline assembly RNG.  Simpler 

implementations may not require a standard RNG, but this research uses the C-standard 

RNG functions for testing and evaluation purposes. 

4.2.2.2. Advanced MME 

Three main features are developed as modular functions for the advanced MME.  

Each of these features obfuscates the program in different ways.  This feature suite 

obscures the program control flow and serves as anti-disassembly and anti-debugger 

protections. 
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A function manager (FM) obscures the control flow of the program.  Whenever 

the main program calls a protected function, it sends a request for the protected function 

to the function manager.  The function manager relays all calls to the protected functions.  

The main purpose for this type of protection is to delay the reversing process when 

examining the main program to determine its general function.  Instead of observing 

several different identifying function calls, the program presents the reverser with another 

layer of complexity.  Figure 4.7 shows a function manager implementation for two 

simple functions. 

Parameter passing is problematic with such a simple implementation, because the 

void function pointer (*f) has no parameters.  To relay a call to another function with 

parameters requires an explicit function pointer with an identical parameter list.  It is 

infeasible to declare a set of function pointers that use every possible permutation of 

parameters.  To simplify this component, the approach shown above (a void function 

pointer with no parameters) is adopted.  However, the void function pointers with no 

parameters are still a problem.  This is because many functions in the test program also 

have return values, which the above implementation also does not support.  Instead, the 

program declares global parameter and return variables for passing parameters and 

return values.  To implement this, the basic approach defines macros that assign the 

parameter values to the appropriate global variable before calling the function.  Before 

returning, the function assigns the return value to the global return value variable.  

Replacing the original function calls with macro versions completes this approach.  

Figure 4.8 shows a macro definition that calls one of the functions in the test program.  
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The return type becomes type void and the parameter list is now empty.  Both values 

pass through the declared global integer variables. 

 

 
Figure 4.7.  Sample function manager implementation 
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#define CALL_int_log2(n) \ 
      _argumentN_int_log2__ = n; \ 
      functionManager(INT_LOG2); 
 
   int _argumentN_int_log2__, 
       _returnInt_int_log2__; 
 
   extern void int_log2(); 
 
   // Originally the following 
   // extern int int_log2(int n); 

Figure 4.8.  Macros replace function calls and handle parameter passing 

Because the function manager calls the protected functions, only the function 

manager needs to know where the functions truly reside in memory.  Normally a C 

compiler assigns a unique address for each function.  Whenever the program wants to call 

a function, the compiler inserts a CALL instruction with the appropriate function address.  

During execution, if the functions change locations, their original addresses are no longer 

valid.  If the program does not use a function manager implementation, the program itself 

must correct (regardless of location) every call to the relocated function to reflect the 

function’s new address.  This can require a substantial amount of overhead (e.g., 

searching the entire program’s memory space) depending on the implementation.  

Moreover, if the program reorders functions often, this overhead increases substantially. 

The function reordering experiment requires a more advanced MME capable of 

shuffling functions in memory.  This advanced MME needs to resolve several relative 

addressing issues.  For instance, many of the benchmark utility functions call other 

functions.  Herein, all calls pass through a function manager that relays the calls to other 

functions, but invoking the function manager itself still requires a function call.  
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However, the function manager reorders (or shuffles) the utility functions making their 

relative addressing calls invalid.  This invalid addressing, if not corrected, causes the 

program to crash. 

The morph points themselves call a function that manipulates the return address to 

skip the next three data bytes.  These function calls are likely invalid after relocating their 

containing function, because they now point to code that is not a subroutine or they 

possibly even point outside the program memory space. 

To fix these relative addressing problems, the shuffle routine is modified to track 

the relative offsets of each function call from the beginning of each reordered function.  

With this information, the shuffle routine can easily compute a new relative offset for the 

function call.  When reordering, the shuffle routine determines a new starting address for 

a function.  Calculating the delta of the current starting address and its new starting 

address results in an offset value that the program adds to each relative address call. 

Furthermore, the MME cannot locate the morph points after function reordering 

with absolute addressing.  To alleviate this addressing problem, the MME now tracks 

morph points by relative address from the beginning of the function rather than by 

absolute addresses. 

4.2.3. Regression Model Input Generator 

A generator program is developed exclusively to provide input data for the 

regression models.  This program executes and records runtimes for a series of various 

morph point implementations.  The program captures 900 data pairs (number of morph 
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point calls and total morph point execution time) as inputs for the regression models.  The 

data pairs include 30 samples for each of 30 predictor values chosen. 

4.3. Component Data Flow 

The data flow from the main program to the MME is simple.  During 

initialization, the main function of the benchmark program initializes the MME by 

passing the following parameters:  function addresses, call offsets (from function base 

address), morph point offsets (from function base address), and the type of RNG to use.  

The MME calculates the absolute address for function calls (within morphed functions) 

and morph points by adding the offsets to the containing function’s base address.  The 

main program only provides this information to the MME at initialization.  Afterwards, 

the MME needs no more data, because it may manipulate the program structure to the 

point that the main program no longer knows where functions reside.  To invoke the 

metamorphic transformation, the main program simply calls the appropriate MME 

routine to metamorphose.  Since the main program no longer understands its own 

structure once morphed, it relies heavily on the MME. 

On the other hand, the MME provides little data back to the main program.  In 

these research implementations, the MME only provides the number of times it modified 

a particular set of morph points during a call to the MME.  However, the MME tracks 

other data, such as the number of times it modifies each specific morph point and the 

number of morph point calls that program makes.  Figure 4.9 shows the program 

component data flow between the main function and the MME. 
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Figure 4.9.  Program data flow diagram 

4.4. Validation 

This research employs many validation methods [Lil00].  Comparing the 

modified versions of the benchmark with the original benchmark is one of the main 

validation steps.  This comparison is only partial, because the validation code does not 

capture all intermediate values. 

4.4.1. Benchmark Program Validation 

First, the validation outputs (described earlier) from the developed models are 

compared with the original program validation outputs.  This approach constitutes 

comparisons with the real system (the original benchmark) for partial, but exact, matches.  
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All models generate the same output results validating that the program function is 

unchanged. 

Second, the normal benchmark output and the added performance measuring 

outputs are analyzed.  The original benchmark suite provides an estimate of the millions 

of floating-point operations per second (MFLOPs).  The number of floating point 

operations remains constant throughout the validation steps.  After adding the timing 

components, a thorough analysis of both the MFLOP and execution time metrics is 

performed.  The execution time and MFLOP metrics are inversely proportional and the 

two can be compared because the number of FLOPs remains constant.  Although not 

exact matches because the MFLOP calculation uses a different timer, the resulting 

percent increases in execution time are similar to the percent decreases in MFLOPs for 

each of the test programs. 

4.4.2. MME and Morph Point Validation 

Engineering judgment is used when testing the MME and morph point 

implementations for logical results.  With the help of debuggers, the execution of the 

MME itself and the morph points are analyzed to ensure proper functionality (i.e., the 

data bytes inserted in the opcode shift are never executed).  Furthermore, no experimental 

tests failed to execute. 

4.5. Summary 

This chapter describes the rationale for the design of the experimental 

components.  It also highlights the more interesting products and observations of each 
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development spiral.  Finally, the chapter concludes with a discussion of the component 

data flow and component validation. 
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5. V. Analysis and Results 

5.1. Chapter Overview 

This chapter presents findings from the experiments.  Beginning with a statistical 

analysis of the experiments, the chapter proceeds to a detailed accounting of other 

experimental observations and concludes with a proposed set of procedures for 

implementing morph points. 

5.2. Experimental Results 

This section presents results and statistical analysis.  Each subsection gives 

specific details for each of the three experiments. 

5.2.1. Morph Point Performance Experiment 

The morph point performance experiment evaluates the performance overhead of 

integrating simple data byte opcode shifts into various executables.  The measured 

overhead consists of the runtime performance of the MME and the execution time of the 

added morph point instructions.  In addition, the predictability of executables compiled 

with the GCC and VSNET C compilers is assessed.  Table 5.1 shows the performance 

results for the MME for both compilers.  These results indicate how long it takes the 

MME to randomly modify 40 morph points contained in the test program.  For each 

morph point, the MME decides if it should modify it and determines what to change it to 

if necessary.  Even though the MME uses a RNG to make these decisions, the time 

required is in the microsecond range, which is undetectable in an interactive application. 
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Table 5.1.  MME performance summary 

Compiler Average (μs) Standard 
Deviation (μs) 

95% Confidence 
Interval (μs) 

GCC 5.335 2.317 [ 5.014 , 5.656 ] 

VSNET 6.030 1.962 [ 5.758 , 6.302 ] 

 

To build a regression model, a data point generator produces data point pairs for 

each compiler.  This test program generates 30 data points for each predictor value and 

uses 30 linearly increasing predictor values.  For each data point, the program measures 

the execution time of the morph points indirectly by calculating the performance 

difference between the baseline and metamorphic versions of the test program.  Finally, 

these data points are used for building the regression models with the statistical program 

Minitab [Min06].  In all of these models, the predictor variable is the number of function 

calls (in millions of calls) and the response variable is the total morph point execution 

time (in milliseconds).  To ensure that Minitab generates regression coefficients that are 

large enough in magnitude to read, the units for the number of calls is adjusted to 

millions of calls and the execution time is changed from seconds to milliseconds.  The 

following subsections detail the regression models for each compiler and their results. 

5.2.1.1. GCC Morph Point Performance Results 

Tables 5.2 and 5.3 show summaries of the GCC performance tests.  Collectively, 

the benchmark programs contained 40 morph points strategically placed through the 

protected functions to precede a variety of instructions (e.g., various assignments, 

conditionals, function calls, etc.). 
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Table 5.2.  GCC baseline performance summary 

Benchmark 
Application Average (s) Standard 

Deviation (s) 
95% Confidence 

Interval (s) 

FFT 6.46 0.00585 [ 6.46 , 6.46 ] 

SOR 4.63 0.00610 [ 4.63 , 4.63 ] 

MC 3.68 0.00843 [ 3.68 , 3.68 ] 

SMM 6.08 0.00402 [ 6.08 , 6.08 ] 

LU 3.59 0.00403 [ 3.59 , 3.59 ] 

 

Table 5.3.  GCC morph point performance summary 

Benchmark 
Application Average (s) Standard 

Deviation (s) 
95% Confidence 

Interval (s) 

FFT 9.18 0.00625 [ 9.17 , 9.18 ] 

SOR 12.2 0.0102 [ 12.2 , 12.2 ] 

MC 7.90 0.00402 [ 7.90 , 7.90 ] 

SMM 15.2 0.00792 [ 15.2 , 15.2 ] 

LU 7.97 0.00680 [ 7.97 , 7.97 ] 

 

At first glance, the execution time increases are substantial with more than 150% 

increases in two cases (SMM and LU).  However, another factor contributing to the 

execution time increase is the number of times the morph points execute, which leads to 

the primary research metric for this experiment, execution time per morph point.  Table 

5.4 shows the number of morph point calls and the average execution times per morph 

point for the benchmark programs.  Unfortunately, significant variance exists in the 

morph point execution times across the different programs. 
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Table 5.4.  GCC morph point calls and execution time per morph point 

Benchmark 
Application 

Execution Time 
Increase (s) 

Number of Morph 
Point Calls 

Execution Time per 
Morph Point (ns) 

FFT 2.72 250,856,512 10.8 

SOR 7.58 314,694,286 24.1 

MC 4.22 268,435,567 15.7 

SMM 9.13 655,486,073 13.9 

LU 4.38 330,979,498 13.2 

 

Several discrepancies exist in these results.  The execution times are expected to 

be somewhat consistent.  Instead, the average execution times are erratic and difficult to 

explain.  Process scheduling and other OS factors do not appear to cause this erratic 

behavior, because repeated tests meet with similar results.  Another explanation for the 

performance decrease is that the morph points potentially cause instruction cache misses, 

where the data requested does not reside in cache and the control unit must instead fetch 

the data from memory [PaH05]. 

The scatter plot of the number of morph point calls and the resulting morph point 

execution time shown in Figure 5.1 indicates that a strong linear relationship exists 

between the predictor and response variables.  This data is produced by the regression 

model input generator program described previously.  One of the first assumptions that 

simple linear regression modeling requires is for the data to exhibit a linear relationship.  

If the data set does not exhibit a linear relationship, simple linear regression modeling is 

not a valid prediction method. 
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Figure 5.1.  Resulting scatter plot for GCC test program data points 

Although the data point pairs produce by the generator appear to have a strong 

linear relationship, they unfortunately do not satisfy other assumptions necessary for 

regression modeling.  Figure 5.2 is a Minitab quad chart based on the same data.  Since 

the residual values (the error from the data point to the regression line) are not normally 

distributed, the simple generator is not an adequate source for the regression model.  In 

addition, the variance, which should be constant, also appears to increase causing the 

gradual fanning in the two charts on the right.  The rate of change of the variance is 

actually in the billionth range, which is reasonably constant. 
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Figure 5.2.  Resulting Minitab quad chart from simple generator 

Based on the test program’s generated data points, the resulting Minitab 

regression model equation follows in Figure 5.3.  Many facets of the model appear 

reasonable, but the model is still untrustworthy, because the data failed to meet the 

underlying model assumptions. 

The resulting model appears intuitively correct as well.  One would also expect to 

see the regression model’s Y-intercept point at approximately 0 seconds and the model 

agrees (0.0423 seconds).  Furthermore, the predictor coefficient is the regression slope 

factor and it roughly corresponds to the overall calculated morph point execution time of 

15.4 nanoseconds (12.2 nanoseconds in the regression model) for the GCC-compiled test 

programs. 
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The regression equation is 
Total MP Exec Time (ms) = 0.042 + 12.2 MP Calls (Millions) 
 
 
Predictor               Coef  SE Coef         T      P 
Constant              0.0423   0.1997      0.21  0.832 
MP Calls (Millions)  12.2155   0.0011  10859.05  0.000 
 
 
S = 2.92099   R-Sq = 100.0%   R-Sq(adj) = 100.0% 
 
PRESS = 7703.67   R-Sq(pred) = 100.00% 
 
 
Analysis of Variance 
 
Source           DF          SS          MS            F      P 
Regression        1  1006108156  1006108156  1.17919E+08  0.000 
Residual Error  898        7662           9 
  Lack of Fit    28         157           6         0.65  0.918 
  Pure Error    870        7505           9 
Total           899  1006115818

Figure 5.3.  Minitab regression model for GCC benchmark 

Because the test generator is not an acceptable source of data for the regression 

model, another approach is necessary.  Instead of using a program with different 

characteristics (i.e., instruction mix) as the target program, the target program itself is 

used as a data point generator for the model.  This approach meets with mixed success.  

Figures 5.4 and 5.5 show the regression model and the resulting quad chart from using 

the GCC FFT program as a generator that produces 25 replications of 5 predictor values.  

The FFT program is changed to execute longer by changing the number of execution 

cycles.  The residuals still do not follow a normal distribution like the previous model.  

However, after analyzing the stair-step pattern in the chart of Residuals Versus the Order 

of the Data, it appears a factor external to the program is contributing to its performance 

unpredictability.  All outlier data points are removed, but the resulting models still exhibit 

similar behavior.  The five predictor values appear inconsistent with one another. 
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The regression equation is 
MP Execution Time = 64.2 + 10.4 MP Function Calls 
 
 
Predictor             Coef  SE Coef       T      P 
Constant             64.22    11.53    5.57  0.000 
MP Function Calls  10.4476   0.0223  469.47  0.000 
 
 
S = 85.1276   R-Sq = 99.9%   R-Sq(adj) = 99.9% 
 
 
Analysis of Variance 
 
Source           DF          SS          MS          F      P 
Regression        1  1597211240  1597211240  220405.25  0.000 
Residual Error  123      891344        7247 
  Lack of Fit     3      882393      294131    3943.24  0.000 
  Pure Error    120        8951          75 
Total           124  1598102585 

Figure 5.4.  Regression model generated by GCC FFT benchmark program 
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Figure 5.5.  Resulting Minitab quad chart of using FFT target program as a generator 
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For completeness, a brief analysis of the regression model accuracy compared to 

the observed experiment results for GCC FFT performance overhead is conducted.  

Surprisingly, both of the above approaches are able to predict the overall execution 

overhead to within 15 percent as shown in Table 5.5.  Even though the FFT regression 

model does not satisfy the assumptions, it is still accurate to within 1 percent of the direct 

measurement of the FFT program conducted during the experiment.  However, the set of 

data points upon which the FFT regression model is based included the actual target 

program parameters.  In this case, the usefulness of the model is questionable, because a 

direct measurement of the target parameters is available. 

 
Table 5.5.  GCC baseline performance summary 

Source Time % Error 

Actual 2.72 -- 

Simple RM 3.06 13% 

FFT RM 2.69 -1% 

 

These findings are interesting, but they lack statistical significance and are likely 

only useful for varying fidelity level estimates.  The mean of differences is analyzed to 

characterize the performance.  Figure 5.6 is a graph of the mean of differences with 

corresponding 95% confidence intervals for the GCC FFT program.  This graph reveals 

that the average execution time for morph points is different for multiple numbers of 

calls. 
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Figure 5.6.  Morph point means of differences by number of calls for GCC FFT 

The only confidence interval overlap is for the 63-million and 502-million call 

points, but only one mean falls within the confidence interval of the other.  Therefore, a 

simple t-test shows any statistically significant difference between the two test points.  

The t-test calculations follow below.  Since the confidence interval for the mean of 

differences does not include zero, these two points have a statistically significant 

difference with 95% confidence. 

 

( )

( ) ( ) ( ) ( )
( )

( ) [ ]

21 2 1 ; 1

1 2

1 2

,

0.139 ns
, 0.479 ns 2.064

25 samples

, 0.422 ns,0.536 ns

d
n

sc c d t
n

c c

c c

α− −= ±

= ±

=

 (5.1) 

72 



 

where 

2 0.975;241 ; 1

before measurement
after measurement

mean value of 
0.479 ns

 

2.064
standard deviation of 
0.139 ns
sample size
25 samples

i

i

i i i

i

n

d i

b
a
d a b

d d

t t

s d

n

α− −

=
=

= −

=
=
=

=
=
=
=
=

 

These findings illustrate the difficulties of measuring program performance at a 

detailed level.  There was no control or visibility into the lower levels of the memory 

hierarchy or the processor itself and it is likely that these components are contributing to 

the unpredictability of the morph point execution times.  The presence of morph points in 

particular locations can cause instruction cache misses and force the processor to wait for 

the instruction to load from a lower (and slower) level in the memory hierarchy.  Others 

note the impact of cache misses on performance and they specifically include it as a 

parameter in their exection time estimation models [ShT05, Axe06]. 

Moreover, any similar investigation should consider the differences in program 

control flow when executing with dissimilar or special parameter values.  Data values are 

often useful for directing program execution flow—especially in scientific and 

engineering applications, which comprise the benchmark suite.  In fact, the results for the 

Monte Carlo (MC) test program supports this theory.  The MC program is the most 
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sequential of the test programs as it consists of only one loop and one conditional.  

Figures 5.7 and 5.8 show the resulting Monte Carlo regression model and quad chart.   

 

 

The regression equation is 
MP Execution Time = 1.81 + 15.7 MP Function Calls 
 
 
Predictor             Coef  SE Coef        T      P 
Constant             1.814    1.402     1.29  0.198 
MP Function Calls  15.7121   0.0025  6212.55  0.000 
 
 
S = 10.3518   R-Sq = 100.0%   R-Sq(adj) = 100.0% 
 
 
Analysis of Variance 
 
Source           DF          SS          MS            F      P 
Regression        1  4135898919  4135898919  38595731.42  0.000 
Residual Error  123       13181         107 
  Lack of Fit     3         595         198         1.89  0.135 
  Pure Error    120       12586         105 
Total           124  4135912100 

Figure 5.7.  Regression model generated by GCC MC benchmark program 
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Figure 5.8.  Residual Plots for GCC MC regression model 
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These results portray the fact that the data points satisfy the model assumptions, residual 

normality and constant variance.  Unfortunately, all of the other regression models fail to 

satisfy these assumptions. 

5.2.1.2. VSNET Morph Point Performance Results 

Similar results are observed for the VSNET-compiled test programs, and these 

findings are included for completeness.  Tables 5.6 and 5.7 show summaries of the 

VSNET performance tests.  As before, the benchmark programs contains 40 morph 

points strategically placed through the protected functions to precede a variety of 

instructions (e.g., various assignments, conditionals, function calls, etc.). 

 
Table 5.6.  VSNET baseline performance summary 

Benchmark 
Application Average (s) Standard 

Deviation (s) 
95% Confidence 

Interval (s) 

FFT 10.87 0.00561 [ 10.9 , 10.9 ] 

SOR 4.86 0.00373 [ 4.86 , 4.86 ] 

MC 3.05 0.00618 [ 3.05 , 3.05 ] 

SMM 7.88 0.00392 [ 7.88 , 7.88 ] 

LU 3.66 0.00469 [ 3.65 , 3.66 ] 

As in the GCC experiments, another factor contributing to the execution time 

increase is the number of times the morph points execute.  Table 5.8 shows the number of 

morph point calls and the average execution times per morph point for the VSNET-

compiled benchmark programs.  The only key difference between the VSNET and GCC 

results is the increased variance for the execution times per morph point between VSNET 

test programs. 
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Table 5.7.  VSNET morph point performance summary 

Benchmark 
Application Average (s) Standard 

Deviation (s) 
95% Confidence 

Interval (s) 

FFT 13.6 0.00630 [ 13.6 , 13.6 ] 

SOR 13.1 0.0108 [ 13.1 , 13.1 ] 

MC 8.01 0.00852 [ 8.01 , 8.01 ] 

SMM 12.7 0.00620 [ 12.7 , 12.8 ] 

LU 11.2 0.0142 [ 11.2 , 11.2 ] 

 

 
Table 5.8.  VSNET morph point calls and execution time per morph point 

Benchmark 
Application 

Execution Time 
Increase (s) 

Number of Morph 
Point Calls 

Execution Time per 
Morph Point (ns) 

FFT 2.77 250,856,512 11.0 

SOR 8.23 314,694,286 26.1 

MC 4.96 268,435,567 18.5 

SMM 4.87 655,486,073 7.4 

LU 7.57 330,979,498 22.9 

 

Based on the test program’s generated data points, the resulting Minitab 

regression model equation for the FFT program follows in Figure 5.9.  Figure 5.10 shows 

the resulting quad chart.  This model also fails to satisfy assumptions.  The residuals do 

not follow a normal distribution about the regression line and they demonstrate the same 

stair-step pattern as seen before. 
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The regression equation is 
MP Execution Time = - 40.5 + 11.0 MP Function Calls 
 
 
Predictor             Coef  SE Coef       T      P 
Constant            -40.49    10.98   -3.69  0.000 
MP Function Calls  10.9517   0.0212  516.61  0.000 
 
 
S = 81.0927   R-Sq = 100.0%   R-Sq(adj) = 100.0% 
 
 
Analysis of Variance 
 
Source           DF          SS          MS          F      P 
Regression        1  1755049988  1755049988  266886.31  0.000 
Residual Error  123      808851        6576 
  Lack of Fit     3      782762      260921    1200.15  0.000 
  Pure Error    120       26089         217 
Total           124  1755858839 

Figure 5.9.  Regression model generated by VSNET FFT benchmark program 
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Figure 5.10.  Residual Plots for VSNET FFT regression model 
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Since the VSNET results are so similar to the GCC results, this thesis makes no 

further elaboration on the VSNET experiment itself.  The appendix includes the 

regression models for the remaining VSNET experiments. 

5.2.2. Instruction Reach Experiment 

The instruction reach experiment assesses the impact (in terms of number of 

instructions) of an opcode shift.  This experiment specifically examines the instruction 

reach achieved by various runtime shift amounts and compares the differences between 

the GCC and VSNET C compilers.  Ideally, the impact of a single morph point would 

reach dozens of instructions with cascading effects on other morph points. 

This experiment has unexpected results and it highlights significant differences 

between the two debuggers.  The default behavior of the two debuggers is different for 

runtime modifications to instruction code.  OllyDbg immediately attempts to parse the 

new disassembly without user input, whereas IDA assumes that the original instruction 

addresses are correct and retains most of the original disassembly. 

5.2.2.1. OllyDbg Results 

OllyDbg generates a new disassembly as soon as a runtime instruction morph 

occurs.  This debugger indicates its uncertainty of the disassembly by marking suspicious 

areas with question mark symbols.  Figure 5.11 shows OllyDbg’s resulting disassembly 

before metamorphosis.  The disassembly includes two morph point constructs at 

addresses 0x0040 1E29 and 0x0040 1E5C.  The three PUSH EAX instructions 

indicate placeholders for opcode shifts (the data bytes).  Figure 5.12 shows OllyDbg’s 

resulting disassembly with the uncertainty symbols after metamorphosis.  When the shift 
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amount aligns to an instruction boundary, such as the shift at address 0x0040 1E2E in 

the same figure, the debugger is certain (i.e., no question marks) of the generated 

disassembly.  However, in this case it misses one instruction (a MOV instruction), 

because the morphed instruction absorbs it completely. 

 

 
Figure 5.11.  OllyDbg screenshot before morphing 

Table 5.9 shows the results for the OllyDbg instruction reach experiment for the 

GCC compiler.  The overall trend implies that larger shift amounts mangle more 

instructions.  This observation seems obvious, because consuming additional bytes likely 

will consume at least part of the following instruction thereby increasing the instruction 

reach.  The deviations from the observed trend require further explanation. 
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Figure 5.12.  OllyDbg screenshot showing garbled instructions after morphing 

 
Table 5.9.  Instruction reach experiment results for GCC compiler 

Compiler Shift Amount 
(Bytes) 

Avg. Instruction 
Reach (# Instr.) 

Avg. Byte Reach 
(Bytes) 

GCC 1 2.58 10.2 

GCC 2 2.40 9.53 

GCC 3 1.68 7.13 

GCC 4 3.83 14.4 

GCC 5 3.80 14.4 

GCC 6 3.13 11.6 

GCC 8 4.60 16.8 
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For the GCC compiled test application, an opcode shift amount of three bytes 

resulted in the lowest instruction reach of only 1.68 instructions on average.  The six-byte 

shift amount (3.13 instructions average) also deviates from the general trend as well.  

These two shifts comprise the majority of the deviations from the observed trend.  When 

evaluating the morph point’s effectiveness in terms of instruction reach, it is helpful to 

consider the instruction distribution of the protected region of the test program as well.  

Figure 5.13 shows the instruction distribution for the region of the baseline GCC 

compiled test program that the MME protects.  The three-byte instructions are by far the 

most common in the graph.  Because of the predominance of three-byte (42%) 

instructions, it makes sense that the three-byte shift amount results in the smallest reach, 

because it is more likely to precede a three-byte instruction and resynchronize quickly.  

The six-byte shift also resynchronizes quickly, because of the overwhelming prevalence 

(70%) of the three-byte and smaller shifts. 

Furthermore, the size of any particular instruction in the program is a dependent 

random variable.  That is, the beginning of a for-loop construct in source code translates 

to a standard series of assembly instructions in GCC.  In the test program, such instances 

include the following instructions:  a three-byte MOV, a three-byte CMP, and a six-byte 

conditional jump.  Introducing a six-byte shift before this sequence completely absorbs 

the first two instructions.  Since the shift realigns perfectly on the instruction boundary 

before the conditional jump, the morph point does not affect any other instructions.  

These types of instruction sequencing dependencies could explain other minor anomalies 

in the data set. 
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Figure 5.13.  Instruction distribution for test program compiled with GCC 

Table 5.10 summarizes the instruction reach results for the VSNET compiled test 

program analyzed with OllyDbg.  The trend holds.  In general, shift amounts are directly 

proportional to instruction reaches.  Figure 5.14 shows the instruction size distribution for 

the VSNET compiled test program.  In fact, shift amounts of four bytes and less follow 

more of a uniform distribution than with the GCC compiler.  When comparing general 

results for VSNET and GCC, the GCC compiler results in larger instruction reaches for 

two- and four-byte shifts.  The increased prevalence of these instruction sizes in the 

VSNET-compiled program likely causes this disparity.  The instruction sequential 
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dependencies described earlier likely cause the lower reaches for three- and five-byte 

shifts. 

 
Table 5.10.  OllyDbg instruction reach results for VSNET compiler 

Compiler Shift Amount 
(Bytes) 

Avg. Instruction 
Reach (# Instr.) 

Avg. Byte Reach 
(Bytes) 

VSNET 1 2.23 8.88 

VSNET 2 2.25 8.93 

VSNET 3 1.25 5.28 

VSNET 4 3.38 12.3 

VSNET 5 2.90 11.3 

VSNET 6 3.43 12.3 

VSNET 8 4.30 15.2 

Comparing these instruction reach results with those from the GCC compiler 

reinforces the theory that larger opcode shifts result in larger instruction reaches 

especially when the shift amount is not one of the more popular instruction sizes.  The 

difference between the GCC and VSNET four-byte shifts (3.83 and 3.38 instructions 

respectively) supports the theory that instruction size popularity (3% for GCC and 15% 

for VSNET) is a key factor. 

Of course, this observation only has general application, because special 

situations warrant additional attention.  For instance, if the developer definitively knows 

that a particular region of code strays from the standard distribution of instruction sizes, 

he or she can tailor morph points in that region towards a particular shift amount to 

maximize their effectiveness.  General knowledge of how a compiler implements a 
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particular construct and the resulting instruction sequence can assist the developer in 

maximizing the instruction mangling. 
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Figure 5.14.  Instruction distribution for test program compiled with VSNET 

5.2.2.2. IDA Pro Results (GCC and Visual Studio .NET) 

Whereas OllyDbg immediately pursues the new disassembly, IDA ignores the 

modification’s potential impact on subsequent instructions and shows the morphed 

instruction followed by the original instructions with their original addresses.  The 

resulting disassembly is inconsistent, because the morphed instruction appears to be only 
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a single byte long (the size of the original instruction at that address).  If IDA believes the 

morphed instruction is accurate, one would suspect that IDA would adjust the remaining 

disassembly to reflect this fact.  Since IDA still shows the original disassembly after the 

morph, this particular metamorphic approach does not seem overly robust—even though 

the resulting disassembly is inconsistent.  Figure 5.15 shows an inconsistent IDA 

disassembly, which occurrs after a six-byte opcode shift.  Three bogus instructions follow 

the morph point call in two cases shown (addresses 0x0040 22D7 and 0x0040 

2315), but the original disassembly also remains visible. 

For the first morph point call, the hexadecimal prefix for the six-byte shift is the 

three-byte string 0x66 8180 starting at address 0x0040 22DC.  The instruction 

shown at this address is a nine-byte ADD instruction with a four-byte displacement (the 

0x01C4 458B added to EAX) and a two-byte immediate value (the 0x8BF0 at the end 

of the instruction).  The address of the second byte in the prefix is 0x0040 22DD.  At 

this address, the instruction shown is actually a ten-byte ADD instruction with four-byte 

displacement and immediate fields.  However, IDA knows that the instruction address for 

the second instruction should not be one byte more than the first instruction, because the 

first instruction is nine-bytes long.  The correct starting address for the second instruction 

should be 0x0040 22E5—not 0x0040 22DD.  Originally, all three bytes following the 

morph point call were set to 0x50, which translates to three PUSH EAX instructions. 

Because of the predefined definition of a mangled instruction and IDA Pro’s 

default handling of runtime instruction changes, all of the IDA Pro instruction reach 
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experiments results in an instruction reach of zero.  However, IDA’s propensity for not 

reconsidering disassembly is also exploitable through different approaches. 

 

 
Figure 5.15.  IDA Pro disassembly after metamorphism 

As a metamorphic exploit example, the software developer can apply 

metamorphism not only to the execution of the program, but to the storage of it as well.  

The program can randomly set the same morph points and save them to disk as parts of a 
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new executable.  When opening the new executable, the debugger must decide what is 

the true instruction code and what is not.  Oftentimes, this ambiguity results in IDA 

mistaking large blocks of instructions for data and other times displaying the false 

mangled instructions.  When reversing with IDA, you must address these issues in order 

to comprehend the underlying program.  Figure 5.16 shows how IDA Pro handles this 

case when opening one of the test programs modified to default six-byte opcode shifts.  

In this case, the morph point prefix fools IDA with the ADD instruction at address 

0x0040 22AF.  However, this screenshot is actually of the same memory region as 

before.  In fact, the data block shown at address 0x0040 22B8 absorbs both of the 

morph points from the previous example (along with two others). 

 

 
Figure 5.16.  IDA Pro opens an executable that utilizes storage metamorphism 
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To produce the disassembly for this region of code, the user must manually select 

the region and use IDA’s analysis tool to convert it to code.  When IDA analyzes this 

code though, the user must now contend with the previously avoided morph points, 

because the analysis tool enables them and mangles the real instructions.  Figure 5.17 

shows the resulting disassembly for the region following the morph point at address 

0x0040 22D7.  Comparing these results with the results in Figure 5.15 shows that the 

disassembler does not resynchronize with the correct instruction boundary until address 

0x0040 22F2. 

 

 
Figure 5.17.  IDA disassembly after analysis of storage morphing executable 

5.2.3. Function Reordering Experiment 

The function reordering experiment examines the execution time necessary for 

subroutine reordering.  Table 5.11 shows the performance overhead statistics for the 

subroutine reordering function based on 200 samples.  The subroutine reordering function 

performs several tasks during the measured execution time.  It dynamically allocates 

memory for function storage, randomly determines the new function order, copies the 
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functions, repairs any relative addressing problems, and clears the previous memory 

space before copying the functions to their new locations.  These results indicate the time 

required to accomplish all of these tasks for one shuffle.  Once again, these execution 

times are nominal—at least for interactive applications.  Furthermore, there is no other 

performance overhead associated with this metamorphic transform (i.e., additional 

instructions such as opcode shift logic). 

 
Table 5.11.  Subroutine reordering function performance summary 

Compiler Average (μs) Standard 
Deviation (μs) 

95% Confidence 
Interval (μs) 

# 
Bytes 

GCC 13.3 5.74 [ 12.5 , 14. 1 ] 1,596 

VSNET 12.1 5.15 [ 11.4 , 12.9 ] 1,512 

 

While the statistical results of the function reordering experiments are relatively 

nondescript, the effects of function reordering are interesting.  For instance, after 

randomly changing the morph points and reordering subroutines, the process of re-

identifying the functions became more difficult, because both transforms garble the 

disassembly.  The next section describes the intangible benefits of metamorphism. 

5.3. Other Observations from Development and Experimentation 

Observations from development and experimentation offer more insight into the 

effects of metamorphism.  These observations run from graphical user interface problems 

to completely crashing the debugger.  This section highlights several interesting 

observations. 
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The debugger user interface provides the attacker with the ability to manipulate 

the debugged program by setting breakpoints and stepping through program instructions.  

These functions are two primary and fundamental features of the debugger [Eil05].  After 

modifying the set of morph points in OllyDbg, the selection of particular instructions fails 

to work properly.  Figure 5.18 shows a user trying to select the garbled instruction at 

address 0x0040 39C6, but the resulting selection is a different instruction (at address 

0x0040 39BF).  Selecting real instructions (as opposed to the garbled instruction in 

shown in the figure) in the general proximity of morph points is difficult as well. 

 

 
Figure 5.18.  Selecting an instruction in OllyDbg after metamorphosis 
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The previous example also shows how OllyDbg expresses its uncertainty 

concerning the disassembly.  OllyDbg places the previously described question mark 

symbol before the hexadecimal representation of the assembly instruction.  The morph 

also interrupts the loop and subroutine reference lines immediately preceding the 

assembly instruction.  When reversing with OllyDbg, it is common to use its built-in 

analysis tool to generate or fix the disassembly.  However, when using the analysis tool 

in OllyDbg, the question mark symbols disappear.  Figure 5.19 shows what happens after 

using the built-in analysis tool in OllyDbg.  Unfortunately, the uncertain disassembly 

symbols (the question marks) are gone and the function and loop symbols disappear as 

well.  Even though OllyDbg restores proper selection functionality after analysis, the tool 

no longer shows the useful symbols (i.e., the question marks, subroutine bounds, and loop 

bounds).  At this point, very few indicators point to a recent instruction metamorphosis.  

In this particular morph, OllyDbg disassembles a data byte (DB F0) at address 0x0040 

39A6.  The only other indicator remaining is the absence of the period (.) symbol that 

appears to indicate an instruction. 

In addition, the instruction opcode shifting metamorphosis has another interesting 

anti-debugging effect.  If a user places a software breakpoint in a morph point, the 

metamorphic engine randomly overwrote it.  Although dependent upon the MME 

implementation, this reinforces the effectiveness of metamorphism as an anti-debugging 

protection.  If the user attempts to remove the breakpoint, OllyDbg identifies and 

describes the corruption of the breakpoint.  However, OllyDbg gives no indication of the 

corrupt breakpoint until this user interaction. 
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Figure 5.19.  Using the analysis tool in OllyDbg after morph occurs 

OllyDbg behaves strangely when the user steps to the first garbled instruction.  In 

the simpler opcode shifting transforms, OllyDbg correctly decodes the current hidden 

instruction.  As soon as the user steps to the next instruction or manipulates the window 

(i.e., scrolls, resizes, etc.), OllyDbg hides the real instruction.  With later advances of the 

metamorphic engine, OllyDbg never shows the correct decoding of the current 

instruction.  This causes a mismatch between the instruction pointer and the address of 

the current highlighted instruction (assuming the highlight indicated the current 

instruction). 
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The morph points in this study causes another minor problem for both OllyDbg 

and IDA Pro; neither debugger could step over a morph point without the program 

continuing execution and not pausing.  Apparently, both debuggers silently place 

breakpoints on the instruction following the morph function call.  The two debuggers 

then assume that the execution will resume at the new breakpoint after the debugger steps 

over the function call.  If the execution actually resumed immediately after the function 

call, the program would stop.  However, with the morph points in this study, the program 

does not stop and continues execution, because the called function modifies the true 

return point, which sets up the opcode shift. 

Both debuggers also have difficulties with moved breakpoints.  When the user 

places a breakpoint on a particular instruction, the debugger replaces the first byte of the 

instruction with the breakpoint interrupt byte (0xCC).  In these experiments, the 

advanced MME randomly reorders protected subroutines.  When the user places a 

breakpoint in a protected subroutine, it is possible that the MME will move the 

subroutine (including the breakpoint interrupt byte) to a new location.  Every time the 

MME moves the subroutine, neither debugger can resolve the original prefix to the 

instruction, because the instruction no longer resides at its expected address.  In these 

cases, the program crashes inside the debugger and the user has to restart it. 

IDA also exhibits more strange behavior when faced with the test program.  

During morphing and shuffling, IDA mistakes a majority of code sections as data.  While 

trying to repair the disassembly by manually converting the regions of data back to code, 

IDA often fails causing the debugger to crash.  IDA normally offers the user an 
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opportunity to save the state of the debugged process.  However, during this failure the 

program makes no such offer.  Whether or not the program truly saves the debugging 

state successfully is questionable.  Figure 5.20 shows the resulting error message that 

IDA presents immediately prior to exiting. 

 

 
Figure 5.20.  IDA error message presented before failure 

5.4. Investigative Questions Answered 

This research does answer investigative questions regarding the predictability of 

morph point overhead.  Unfortunately, the findings imply that the morph point inclusion 

is not highly conducive to accurate prediction. 

This research also describes observed capabilities of the sample metamorphic 

transforms.  Reporting these observations provides the protection community with a 

better understanding of how metamorphism protects as well as citing specific capabilities. 

These findings do imply a general set of procedures for including morph points.  

These procedures are quite simple. 

 
1. Identify specific target areas for opcode shifting.  This identification step is 

important, because the developer likely would want to place stealthy opcode 
shifts in key strategic areas.  For instance, a near-subroutine call is five bytes 
long.  A stealthy five-byte opcode shift could precisely consume a sensitive, 
near-subroutine call leaving little evidence of opcode shifting.  Of course, the 
developer needs to consider the performance impact of placing morph point 
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instructions at a particular location, because a single morph point could be 
executed several million times during normal program execution. 

2. Determine level of change desired for morph point areas.  Different protection 
goals drive key protection tactics.  For example, if the primary function of the 
morph point is to distract an adversary, perhaps a changing morph point is 
best.  However, unless a changing morph point could remain stealthy, a 
developer likely would not want to place it before sensitive instructions.  The 
developer must also decide how the MME should make morph decisions, such 
as with a custom RNG.  (Using a common RNG from a imported library 
creates a search vulnerability for the MME.) 

3. Define morph point implementations.  The developer must choose several 
morph point implementations.  In addition, the developer should decide on a 
mix between homogenous and heterogeneous morph point implementations.  
A homogenous morph point does not change itself, only the opcode prefix for 
confusing the disassembly.  The morph points used in these experiments were 
homogenous and are identifiable as constant instruction sequences.  On the 
other hand, a heterogeneous morph point manipulates itself as well making it 
much harder to detect automatically—similar to the manner that malware uses 
metamorphism.  For instance, a heterogeneous morph point might change 
itself from a function call to a calculated address implementation during 
runtime.  This possibility is extremely plausible, because the MME already 
manipulates part of the morph point during runtime. 

4. Implement the MME.  Developing a custom MME is surprisingly simple.  
During this research, several MME variants are developed.  From that 
experience, two broad categories of MMEs, scouts and soldiers, are identified.  
Scouts employ a search algorithm to find morph points, whereas the developer 
has to tell the soldiers where morph points are.  An obvious advantage of 
scouts is that the programmer does not have to re-inform them when morph 
points move during recompilation.  On the other hand, soldiers can easily 
perform precision morphs, such as inverting conditions for a particular branch 
while not touching other similar conditionals. 

5. Obfuscate the MME.  The need to protect the MME from reversing is noted as 
well.  Obfuscating the MME enhances the security that the metamorphism 
offers. 

 

5.5. Summary 

This chapter describes the analysis and findings of this research.  Findings include 

statistical results as well as observations made during development and testing.  A 
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presentation of investigative questions answered and a simple set of proposed procedures 

conclude the chapter.  Along with the procedures, the chapter also discusses lessons 

learned. 
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6. VI. Conclusions and Recommendations 

6.1. Chapter Overview 

This chapter presents several highlights from this research.  It also discusses the 

significance of this research and recommends areas for future research in the field of 

metamorphism. 

6.2. Conclusions of Research 

One goal of this research is to investigate the time necessary to implement 

specific metamorphic transforms.  The experiments yield the average time required to 

modify a series of 40 morph points as well as the average time needed to reorder six 

subroutines randomly during runtime.  These times, 6 and 13 μs respectively, are nominal 

relative to what a user would notice in an interactive application.  This means it is 

feasible that a developer can use these types of transforms to protect their software while 

remaining within performance requirements.  Furthermore, the time required for 

subroutine reordering is the only overhead of that specific transform, since it does not 

require additional program instructions like the opcode shift logic. 

This research also determines the performance overhead predictability of using 

morph points in a target program.  The performance effects of morph point insertion are 

predictable although it is heavily program dependent to the point of becoming execution 

path dependent.  Basing the regression model from data collected from the modified 

target program produces a more accurate model than from simple regression point 

generators.  The average execution times for this research’s simple morph points show 

reasonable performance overhead of tens of nanoseconds on a modern processor.  With 
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the high likelihood that these measurements are accurate, this finding implies that their 

widespread use is feasible—even if their execution time is not extremely predictable.  

Performance tests conducted after a trial implementation canconfirm that the test program 

remains within performance requirements. 

This research also demonstrates opcode instruction shifting and function 

reordering.  A summary of opcode shift results shows potential instruction and byte reach 

of these simple morph points.  This thesis also presents other observations of difficulties 

two common debuggers faced when executing metamorphism-protected programs.  

Although not statistically significant, these observations show the reduced debugger 

effectiveness against self-modifying code. 

In addition, this research proposes a process for effectively implementing simple 

morph points.  Even though an attacker can easily detect homogenous morph points, 

heterogeneous morph points would not be as simple to defeat.  This research provides a 

basis for expanding this concept. 

6.3. Research Contributions 

Metamorphism has applications in at least three focus areas of software 

protection:  anti-reverse engineering, anti-tamper, and anti-piracy.  Increasing the time 

required to reverse engineer protected software directly translates to dollar savings and 

prolonged military dominance.  Metamorphism can enhance traditional encryption and 

obfuscation as well as stand alongside them as another significant contributor to software 

protection.  Different metamorphism implementation strategies can provide tamper 

resistance.  Developers can design programs to fail or heal themselves during execution if 
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they detect tampering.  Yip and Zhou [YiZ04] use metamorphism in their registration 

system for protecting software from piracy. 

In addition, this research has contributed two technical papers, which the 

International Conference on Information Warfare and Security has already accepted for 

publication [DuE06, EdD06].  These papers describe various categories of software 

protection found in malware and provide an in-depth analysis of metamorphism and its 

potential application to non-malicious software. 

6.4. Recommendations for Future Research 

The field of software metamorphism is a new research area.  Although there are 

many research vectors to pursue in this area, several recommendations for future research 

follow. 

 
• Expanding this type of regression investigation to include other metamorphic 

transforms.  Capturing both protective benefits and procedures for integration 
could help streamline the maturation process. 

• Refining the list of metamorphic transforms.  Other promising transforms include 
storage metamorphism, instruction reordering, and dynamic control flow 
obfuscating transforms. 

o Dynamic control flow obfuscation.  Reverse branch conditions and encrypt 
dynamically.  Dynamic encryption could re-encrypt with different keys 
and randomly encrypt different regions of code with either stored or 
calculated keys.  This concept combined with a one-time pad cipher could 
prove highly stealthy.  Unlike traditionally encrypted code, which tends to 
be obvious, the dynamic one-time pad transform could appear as 
completely legitimate code.  This approach could prove quite effective, 
because attackers would have difficulty knowing when they were 
reversing the cipher code (i.e., garbage) or the real assembly. 

o Dynamic variable redefinition.  Swap variable storage locations in 
memory or perform other data obfuscations during runtime. 

• Developing stealthy heterogeneous morph points. 
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6.5. Summary 

This study examines software protections commonly found in malware.  The 

investigation also provides an in-depth study into the performance overhead and effects 

of metamorphism.  It is feasible to estimate the performance overhead of incorporating 

function-reordering features while strategically planting opcode shifts throughout a target 

program. 

This research is a pioneering expedition into metamorphism in non-malicious 

code but much research remains.  Other transforms still require investigation, such as 

register substitution, instruction reordering, and function outlining.  The software 

community will decide if an unlikely source for protection ideas, malware, can provide a 

scientific breakthrough, as was the case with the discovery of penicillin.  Time will tell if 

history repeats itself. 
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Appendix:  Regression Models 

 

The regression equation is 
MP Execution Time = 64.2 + 10.4 MP Function Calls 
 
 
Predictor             Coef  SE Coef       T      P 
Constant             64.22    11.53    5.57  0.000 
MP Function Calls  10.4476   0.0223  469.47  0.000 
 
 
S = 85.1276   R-Sq = 99.9%   R-Sq(adj) = 99.9% 
 
 
Analysis of Variance 
 
Source           DF          SS          MS          F      P 
Regression        1  1597211240  1597211240  220405.25  0.000 
Residual Error  123      891344        7247 
  Lack of Fit     3      882393      294131    3943.24  0.000 
  Pure Error    120        8951          75 
Total           124  1598102585 

Figure A.1.  Regression model generated by GCC FFT benchmark program 
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Figure A.2.  Residual Plots for GCC FFT regression model 
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The regression equation is 
MP Execution Time = 37.7 + 10.4 MP Function Calls 
 
 
Predictor             Coef  SE Coef        T      P 
Constant            37.663    1.470    25.62  0.000 
MP Function Calls  10.4067   0.0028  3694.95  0.000 
 
 
S = 10.6261   R-Sq = 100.0%   R-Sq(adj) = 100.0% 
 
 
Analysis of Variance 
 
Source          DF          SS          MS            F      P 
Regression       1  1541576413  1541576413  13652673.70  0.000 
Residual Error  98       11066         113 
  Lack of Fit    2        4485        2242        32.71  0.000 
  Pure Error    96        6581          69 
Total           99  1541587478 

Figure A.3.  Regression model generated by GCC FFT without fourth data point 
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Figure A.4.  Residual Plots for GCC FFT regression model (without fourth data point) 
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The regression equation is 
MP Execution Time = 267 + 15.1 MP Function Calls 
 
 
Predictor             Coef  SE Coef      T      P 
Constant             267.3    106.4   2.51  0.013 
MP Function Calls  15.0867   0.1638  92.13  0.000 
 
 
S = 785.812   R-Sq = 98.6%   R-Sq(adj) = 98.6% 
 
 
Analysis of Variance 
 
Source           DF          SS          MS         F      P 
Regression        1  5241013789  5241013789   8487.46  0.000 
Residual Error  123    75952616      617501 
  Lack of Fit     3    75897489    25299163  55070.55  0.000 
  Pure Error    120       55127         459 
Total           124  5316966406 

Figure A.5.  Regression model generated by GCC SOR benchmark program 

Residual

P
er

ce
nt

200010000-1000-2000

99.9

99

90

50

10

1

0.1

Fitted Value

R
es

id
ua

l

20000150001000050000

1500

1000

500

0

-500

Residual

Fr
eq

ue
nc

y

160012008004000-400

40

30

20

10

0

Observation Order

R
es

id
ua

l

12
0

11
0

10
09080706050403020101

1500

1000

500

0

-500

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for MP Execution Time (GCC - SOR)

 
Figure A.6.  Residual Plots for GCC SOR regression model 
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The regression equation is 
MP Execution Time = 1.81 + 15.7 MP Function Calls 
 
 
Predictor             Coef  SE Coef        T      P 
Constant             1.814    1.402     1.29  0.198 
MP Function Calls  15.7121   0.0025  6212.55  0.000 
 
 
S = 10.3518   R-Sq = 100.0%   R-Sq(adj) = 100.0% 
 
 
Analysis of Variance 
 
Source           DF          SS          MS            F      P 
Regression        1  4135898919  4135898919  38595731.42  0.000 
Residual Error  123       13181         107 
  Lack of Fit     3         595         198         1.89  0.135 
  Pure Error    120       12586         105 
Total           124  4135912100 

Figure A.7.  Regression model generated by GCC MC benchmark program 

Residual

P
er

ce
nt

50250-25-50

99.9

99

90

50

10

1

0.1

Fitted Value

R
es

id
ua

l

1600012000800040000

50

25

0

-25

-50

Residual

Fr
eq

ue
nc

y

30150-15-30

30

20

10

0

Observation Order

R
es

id
ua

l

1201101009080706050403020101

50

25

0

-25

-50

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for MP Execution Time (GCC - MC)

 
Figure A.8.  Residual Plots for GCC MC regression model 
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The regression equation is 
MP Execution Time = - 105 + 14.5 MP Function Calls 
 
 
Predictor              Coef  SE Coef        T      P 
Constant           -105.024    8.170   -12.86  0.000 
MP Function Calls   14.5116   0.0060  2403.83  0.000 
 
 
S = 60.3379   R-Sq = 100.0%   R-Sq(adj) = 100.0% 
 
 
Analysis of Variance 
 
Source           DF           SS           MS           F      P 
Regression        1  21037089287  21037089287  5778378.41  0.000 
Residual Error  123       447801         3641 
  Lack of Fit     3       322980       107660      103.50  0.000 
  Pure Error    120       124821         1040 
Total           124  21037537088 

Figure A.9.  Regression model generated by GCC SMM benchmark program 
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Figure A.10.  Residual Plots for GCC SMM regression model 
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The regression equation is 
MP Execution Time = 19.0 + 13.6 MP Function Calls 
 
 
Predictor             Coef  SE Coef       T      P 
Constant             19.03    11.01    1.73  0.087 
MP Function Calls  13.6095   0.0161  844.37  0.000 
 
 
S = 81.3454   R-Sq = 100.0%   R-Sq(adj) = 100.0% 
 
 
Analysis of Variance 
 
Source           DF          SS          MS          F      P 
Regression        1  4717762990  4717762990  712967.70  0.000 
Residual Error  123      813901        6617 
  Lack of Fit     3      802488      267496    2812.59  0.000 
  Pure Error    120       11413          95 
Total           124  4718576891 

Figure A.11.  Regression model generated by GCC LU benchmark program 
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Figure A.12.  Residual Plots for GCC LU regression model 

106 



 

 

The regression equation is 
MP Execution Time = - 40.5 + 11.0 MP Function Calls 
 
 
Predictor             Coef  SE Coef       T      P 
Constant            -40.49    10.98   -3.69  0.000 
MP Function Calls  10.9517   0.0212  516.61  0.000 
 
 
S = 81.0927   R-Sq = 100.0%   R-Sq(adj) = 100.0% 
 
 
Analysis of Variance 
 
Source           DF          SS          MS          F      P 
Regression        1  1755049988  1755049988  266886.31  0.000 
Residual Error  123      808851        6576 
  Lack of Fit     3      782762      260921    1200.15  0.000 
  Pure Error    120       26089         217 
Total           124  1755858839 

Figure A.13.  Regression model generated by VSNET FFT benchmark program 
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Figure A.14.  Residual Plots for VSNET FFT regression model 
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The regression equation is 
MP Execution Time = 132 + 26.0 MP Function Calls 
 
 
Predictor             Coef  SE Coef        T      P 
Constant            131.79    13.08    10.08  0.000 
MP Function Calls  26.0161   0.0201  1292.19  0.000 
 
 
S = 96.6116   R-Sq = 100.0%   R-Sq(adj) = 100.0% 
 
 
Analysis of Variance 
 
Source           DF           SS           MS           F      P 
Regression        1  15585206103  15585206103  1669760.95  0.000 
Residual Error  123      1148057         9334 
  Lack of Fit     3       919634       306545      161.04  0.000 
  Pure Error    120       228423         1904 
Total           124  15586354160 

Figure A.15.  Regression model generated by VSNET SOR benchmark program 
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Figure A.16.  Residual Plots for VSNET SOR regression model 
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The regression equation is 
MP Execution Time = - 2.69 + 18.5 MP Function Calls 
 
 
Predictor             Coef  SE Coef        T      P 
Constant            -2.687    1.674    -1.60  0.111 
MP Function Calls  18.4583   0.0030  6109.15  0.000 
 
 
S = 12.3669   R-Sq = 100.0%   R-Sq(adj) = 100.0% 
 
 
Analysis of Variance 
 
Source           DF          SS          MS            F      P 
Regression        1  5708009407  5708009407  37321728.93  0.000 
Residual Error  123       18812         153 
  Lack of Fit     3         393         131         0.85  0.467 
  Pure Error    120       18418         153 
Total           124  5708028218 

Figure A.17.  Regression model generated by VSNET MC benchmark program 
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Figure A.18.  Residual Plots for VSNET MC regression model 
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The regression equation is 
MP Execution Time = - 58.9 + 7.87 MP Function Calls 
 
 
Predictor             Coef  SE Coef        T      P 
Constant           -58.894    4.010   -14.69  0.000 
MP Function Calls  7.87200  0.00296  2656.67  0.000 
 
 
S = 29.6160   R-Sq = 100.0%   R-Sq(adj) = 100.0% 
 
 
Analysis of Variance 
 
Source           DF          SS          MS           F      P 
Regression        1  6190512863  6190512863  7057869.60  0.000 
Residual Error  123      107884         877 
  Lack of Fit     3       93844       31281      267.35  0.000 
  Pure Error    120       14041         117 
Total           124  6190620748 

Figure A.19.  Regression model generated by VSNET SMM benchmark program 
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Figure A.20.  Residual Plots for VSNET SMM regression model 
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The regression equation is 
MP Execution Time = - 36.6 + 23.3 MP Function Calls 
 
 
Predictor             Coef  SE Coef        T      P 
Constant           -36.617    6.349    -5.77  0.000 
MP Function Calls  23.2552   0.0093  2502.95  0.000 
 
 
S = 46.8916   R-Sq = 100.0%   R-Sq(adj) = 100.0% 
 
 
Analysis of Variance 
 
Source           DF           SS           MS           F      P 
Regression        1  13775054047  13775054047  6264750.26  0.000 
Residual Error  123       270455         2199 
  Lack of Fit     3       259236        86412      924.28  0.000 
  Pure Error    120        11219           93 
Total           124  13775324502 

Figure A.21.  Regression model generated by VSNET LU benchmark program 
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Figure A.22.  Residual Plots for VSNET LU regression model 
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